Integrating AI‑Based Orbital Ultrasound with Tear Proteomic Biomarkers for Precision Diagnosis of Orbital Inflammatory Disorder (OID), Including Graves’ orbitopathy (GO)

Authors

Hadi Khazaei

N/A (USA)

Behrooz Khajehee

University of Milano-Bicocca (USA)

Danesh Khazaei

Department of Chemistry, Portland State University (USA)

Kaneez Abbas

Athreya Medtech (USA)

Nashrah Junejo

Washington State University (USA)

Majd Oteibi

Validus Institute Inc. (USA)

Faryar Etesami

Department of Chemistry, Portland State University (USA)

Bala Balaguru

Athreya Medtech (USA)

Article Information

DOI: 10.51584/IJRIAS.2025.100900086

Subject Category: Artificial Intelligence

Volume/Issue: 10/9 | Page No: 869-877

Publication Timeline

Submitted: 2025-09-16

Accepted: 2025-09-22

Published: 2025-10-23

Abstract

Graves’ orbitopathy (GO) is a potentially blinding manifestation of Orbital Inflammatory Disorder (OID). Although characteristic clinical signs and imaging features (bilateral exophthalmos, extra‑ocular muscle swelling) often guide diagnosis, there remain substantial diagnostic and prognostic challenges. Approximately half of patients with Orbital Inflammatory Disorder (OID) develop orbitopathy, but only a minority experience sight‑threatening diseases. The inability to predict who will progress and the lack of biomarkers to distinguish inflammatory versus fibrotic stages hinder timely intervention. Recent research highlights two complementary advances: (1) tear proteomics can reveal disease‑specific protein signatures and offers a non‑invasive source of biomarkers; and (2) an AI‑assisted orbital ultrasound proof-of-concept model has been developed, using Google Vertex AI Platform, that can differentiate orbital inflammatory disease (OID) from non‑inflammatory orbitopathy (NIO) with high precision. This proposal aims to integrate tear proteomic biomarkers with AI‑based orbital ultrasound to create a hybrid diagnostic workflow that enhances sensitivity, specificity, and prognostication in OID. Longitudinal tear sampling from OID, GD without orbitopathy and other inflammatory controls will be coupled with mass–spectrometry–based proteomic profiling and

Keywords

AI‑Based ,Orbital ,Ultrasound ,Tear Proteomic

Downloads

References

1. Khazaei H, Khazaei D, Verma R, et al. The Potential of Tear Proteomics for Diagnosis and Management of Orbital Inflammatory Disorders. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:15-29. doi:10.1007/978-3-031-85768-3_3 [Google Scholar] [Crossref]

2. H. Khazaei et al., Leveraging Vertex AI for Automated Ultrasound Image Analysis: A Comprehensive Review. [Google Scholar] [Crossref]

3. Khazaei H. Assessment of Disease Activity of Graves’ Using Orbital Ultrasonography. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:67-74. doi:10.1007/978-3-031-85768-3_7 [Google Scholar] [Crossref]

4. Khazaei H. Proteomic Analysis and Quantification of Human Tears in Graves Orbitopathy (GO): A Novel Approach. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:31-50. doi:10.1007/978-3-031-85768-3_4 [Google Scholar] [Crossref]

5. Aass, C., Norheim, I., Eriksen, E. F., Thorsby, P. M., & Pepaj, M. (2015). Single unit filter-aided method for fast proteomic analysis of tear fluid. Analytical Biochemistry, 480, 1–5. https://doi.org/10.1016/j.ab.2015.04.017 [Google Scholar] [Crossref]

6. Bartalena, L., Kahaly, G. J., Baldeschi, L., Dayan, C. M., Eckstein, A., Marcocci, C., ... & EUGOGO. (2021). The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. European journal of endocrinology, 185(4), G43-G67. [Google Scholar] [Crossref]

7. Khazaei H, Khazaei D, Ashraf D, Mikkilineni S, Ng JD. Orbital Ultrasonography for Meaningful Orbital Inflammatory Responses in Thyroid-Associated Orbitopathy (TAO). In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:59-65. doi:10.1007/978-3-031-85768-3_6 [Google Scholar] [Crossref]

8. Lipor J, Khazaei H, Khazaei D, Franck A, Ng JD, Etesami F. Deep Machine Learning in Eye Ultrasound. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:145-158. doi:10.1007/978-3-031-85768-3_17 [Google Scholar] [Crossref]

9. Bahn, R. S. (2010). Graves’ ophthalmopathy. New England Journal of Medicine, 362(8), 726–738. https://doi.org/10.1056/NEJMra0905750 [Google Scholar] [Crossref]

10. Khazaei H, Khazaei D, Abbas K, Ashraf D, Ng JD. Integrating Imaging Bioinformatics in Ophthalmology. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:127-132. doi:10.1007/978-3-031-85768-3_15 [Google Scholar] [Crossref]

11. Khazaei H, Khazaei D, Ashraf D, Mikkilineni S, Ng JD. Overview of Orbital Ultrasonography. In: Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025:51-57. doi:10.1007/978-3-031-85768-3_5 [Google Scholar] [Crossref]

12. Oteibi M, Khazaei H, Abbas K, Balaguru B, Williams AR, Etesami F. Breast Imaging and omics for Non-Invasive Integrated Classification (BIONIC). Int J Res Sci Innov. 2024;10(8):826–835.Manuscript ID: 10IJ08ASN8264. [Google Scholar] [Crossref]

13. Smith, T. J., & Hegedüs, L. (2016). Graves’ disease. New England Journal of Medicine, 375(16), 1552–1565. https://doi.org/10.1056/NEJMra1510030 [Google Scholar] [Crossref]

14. Dolman, P. J. (2017). Evaluating Graves’ orbitopathy. Best Practice & Research Clinical Endocrinology & Metabolism, 26(3), 229–248. https://doi.org/10.1016/j.beem.2012.09.002 [Google Scholar] [Crossref]

15. Huang, D., Chen, L., & Yang, H. (2021). Tear proteomics in ophthalmology: Progress, potential, and perspectives. Proteomics: Clinical Applications, 15(3), e2000020. https://doi.org/ 10.1002/ prca .202000020 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles