Multi-sensor remote sensing and machine learning for aboveground biomass mapping in Vietnam’s Melaleuca wetlands: A review

Authors

Nguyen Thi Ngoc Tam

Master’s Student, Climate Change and Delta Management Program (K30 Cohort), Can Tho University (Vietnam)

Nguyen Vo Chau Ngan

College of Environment and Natural Resources, Can Tho University (Vietnam)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000035

Subject Category: Machine Learning

Volume/Issue: 10/10 | Page No: 473-487

Publication Timeline

Submitted: 2025-09-30

Accepted: 2025-10-07

Published: 2025-11-01

Abstract

Accurate mapping of aboveground biomass in tropical peatland forests remains challenging due to the complexity of vegetation structure, hydrological regimes, and data heterogeneity across sensors. This review synthesizes multi‑sensor remote sensing and machine‑learning approaches for aboveground biomass estimation in Vietnam’s Melaleuca wetlands, aiming to establish a standardized framework of terminology, metrics, and environmental covariates for future research and applications. By harmonizing key indicators such as canopy height, texture, soil-hydro-geomorphological variables, and validation metrics (R², RMSE), the framework enhances reproducibility, comparability, and data integration across scales. The study further consolidates a practical roadmap encompassing data acquisition, feature engineering, modeling, and validation stages - culminating in uncertainty‑aware biomass mapping that bridges research and operational implementation. Beyond synthesizing existing studies, this work provides actionable guidance for open‑access workflows and policy‑oriented applications in carbon accounting and wetland restoration. The proposed standardized approach thus supports both scientific and managerial communities in advancing sustainable management of Vietnam’s Melaleuca peat ecosystems and will help standardize future aboveground biomass mapping across Southeast Asian wetlands.

Keywords

L-band SAR, LiDAR and GEDI, Melaleuca aboveground biomass, Multi-sensor data fusion, Spatial and spatio-temporal cross-validation

Downloads

References

1. Amitrano D., Giacco G., Marrone S., Pascarella A.E., Rigiroli M., & Sansone C. (2023). Forest aboveground biomass estimation using machine learning ensembles: Active learning strategies for model transfer and field sampling reduction. Remote Sensing, 15(21), 5138. https://doi.org/ 10.3390/ rs1521 5138 [Google Scholar] [Crossref]

2. Araza A., de Bruin S., Herold M., Quegan S., Labriere N., Rodriguez-Veiga P., Avitabile V., Santoro M., Mitchard E.T.A., Ryan C.M., Phillips O.L., Willcock S., Verbeeck H., Carreiras J., Hein L., Schelhaa M.J., Pacheco-Pascagaza A.M., da Conceição Bispo P., Laurin G.V., Vieilledent G., Slik F., Wijaya A., Lewis S. L., Morel A., Liang J., Sukhdeo H., Schepaschenko D., Cavlovic J., Gilani H., Lucas R. (2022). A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272, 112917. https://doi.org/10.1016/j.rse.2022.112917 [Google Scholar] [Crossref]

3. Avitabile V., Herold M., Heuvelink G.B.M., Lewis S.L., Phillips O.L., Asner G.P., Armston J., Ashton P.S., Banin L., Bayol N., Berry N.J., Boeckx P., de Jong B.H.J., DeVries B., Girardin C.A.J., Kearsley E., Lindsell J.A., Lopez-Gonzalez G., Lucas R., Malhi Y., Morel A., Mitchard E.T. A., Nagy L., Qie L., Quinones M.J., Ryan C.M., Ferry S.J.W., Sunderland T., Laurin G.V., Gatti R.C., Valentini R., Verbeeck H., Wijaya A., Willcock S. (2015). An integrated pan‑tropical biomass map using multiple reference datasets. Global Change Biology, 22(4), 1406–1420. https://doi.org/10.1111/gcb.13139 [Google Scholar] [Crossref]

4. Balestra M., Marselis S., Sankey T.T., Cabo C., Liang X., Mokroš M., Peng X., Singh A., Stereńczak K., Vega C., Vincent G., & Hollaus M. (2024). LiDAR data fusion to improve forest attribute estimates: A review. Current Forestry Reports, 10, 281-297. https://doi.org/10.1007/s40725-024-00223-7 [Google Scholar] [Crossref]

5. Boschetti L., Roy D.P., Giglio L., Huang H., Zubkova M., & Humber M.L. (2019). Global validation of the Collection 6 MODIS burned area product. Remote Sensing of Environment, 235, 111490. https://doi.org/10.1016/j.rse.2019.111490 [Google Scholar] [Crossref]

6. Böttcher H., Eisbrenner K., Fritz S., Kindermann G., Kraxner F., McCallum I., & Obersteiner M. (2009). An assessment of monitoring requirements and costs of ‘Reduced Emissions from Deforestation and Degradation’. Carbon Balance and Management, 4, 7. https://doi.org/10.1186/ 1750 -0680-4-7 [Google Scholar] [Crossref]

7. Bui Q., Pham Q., Pham V., Tran V., Nguyen D., Nguyen Q., Nguyen H.D., Do N.T., & Vu V. (2024). Hybrid machine learning models for aboveground biomass estimations. Ecological Informatics, 79: 102421. https://doi.org/10.1016/j.ecoinf.2023.102421 [Google Scholar] [Crossref]

8. Bunting P., Rosenqvist A., Lucas R.M., Rebelo L.M., Hilarides L., Thomas N., Hardy A., Itoh T., Shimada M., & Finlayson C.M. (2018). The global mangrove watch - A new 2010 global baseline of mangrove extent. Remote Sensing, 10(10), 1669. https://doi.org/10.3390/rs10101669 [Google Scholar] [Crossref]

9. Chen Z., Du J., He Y., Liu Y., Zhang Z., Sun Q., & Sun S. (2023). Aboveground forest biomass estimation using tent mapping atom search optimized backpropagation neural network with Landsat 8 and Sentinel 1A data. Remote Sensing, 15(24), 5653. https://doi.org/10.3390/rs15245653 [Google Scholar] [Crossref]

10. Dang H.N., Ba D.D., Trung D.N., & Viet H.N.H. (2022). A novel method for estimating biomass and carbon sequestration in tropical rainforest areas based on remote sensing imagery: A case study in the Kon Ha Nung plateau, Vietnam. Sustainability, 14 (24), 16857-16857. https://doi.org/10.3390/ su1 42416857 [Google Scholar] [Crossref]

11. DeVries B., Pratihast A.K, Verbesselt J., Kooistra L., & Herold M. (2015). Characterizing forest change using community-based monitoring and Landsat time series. PLoS ONE, 11(3): e0147121. https:// doi.org/10.1371/journal.pone.0147121 [Google Scholar] [Crossref]

12. Dubayah R.O., Armston J., Kellner J.R., Duncanson L., Healey S.P., Patterson P.L., Hancock S., Tang H., Bruening J.M., Hofton M.A., Blair J.B., & Luthcke S.B. (2022). GEDI L4A footprint level aboveground biomass density, Version 2.1. ORNL DAAC, Oak Ridge, Tennessee, USA. https:// doi.org/10.3334/ORNLDAAC/2056 [Google Scholar] [Crossref]

13. Englhart S., Franke J., Keuck V., & Siegert F. (2012). Aboveground biomass estimation of tropical peat swamp forests using SAR and optical data. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany. 6577-6580, https://doi.org/10.1109/IGARSS.2012.6352092 [Google Scholar] [Crossref]

14. Giglio L., Boschetti L., Roy D.P., Humber M.L., & Justice C.O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217, 72–85. https:// doi.org/10.1016/j.rse.2018.08.005 [Google Scholar] [Crossref]

15. GOFC‑GOLD (2011). A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation (COP17‑1). GOFC‑GOLD Project Office, Natural Resources Canada. https://redd.unfccc.int/uploads/63_33_redd_20120509_gofc-gold.pdf [Google Scholar] [Crossref]

16. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D. & Moore R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 [Google Scholar] [Crossref]

17. Gumbricht T., Roman‑Cuesta R.M., Verchot L., Herold M., Wittmann F., Householder E., Herold N., & Murdiyarso D. (2017). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 23(9), 3581–3599. https://doi.org/10.1111/gcb.13689 [Google Scholar] [Crossref]

18. Hengl T., de Jesus J.M., Heuvelink G.B.M., Gonzalez M.R., Kilibarda M., Blagotić A., Shangguan W., Wright M.N., Geng X., Bauer‑Marschallinger B., Guevara M.A., Vargas R., MacMillan R.A., Batjes N.H., Leenaars J.G.B., Ribeiro E., Wheeler I, Mantel S., & Kempen B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https:// doi.org/ 10.1371/journal.pone.0169748 [Google Scholar] [Crossref]

19. Herold M., Román‑Cuesta R.M., Mollicone D., Hirata Y., van Laake P., Asner G.P., Souza C., Skutsch M., Avitabile V., & MacDicken K. (2011). Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance and Management, 6, 13. https://doi.org/10.1186/1750-0680-6-13 [Google Scholar] [Crossref]

20. Huy B., Poudel K.P., Kralicek K., Hung N.D., Khoa P.V., Phuong V.T., & Temesgen H. (2016). Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam. Forests, 7(8), 180. https://doi.org/10.3390/F7080180 [Google Scholar] [Crossref]

21. JAXA & EORC - Japan Aerospace Exploration Agency, and Earth Observation Research Center (2022). Global 25 m Resolution PALSAR‑2 Forest/Non‑Forest Map (FNF) (Ver. 2.0.0) - Dataset Description. https://www.eorc.jaxa.jp/ALOS/en/dataset/pdf/DatasetDescription_PALSAR2_FNF_v200a.pdf [Google Scholar] [Crossref]

22. Kappas M. (2020). Estimating the aboveground biomass of an evergreen broadleaf forest in Xuan Lien nature reserve, Thanh Hoa, Vietnam, using SPOT-6 data and the random forest algorithm. International Journal of Forestry Research, 1, 4216160. https://doi.org/10.1155/2020/4216160 [Google Scholar] [Crossref]

23. Kellner J.R., Armston J., & Duncanson L. (2023). Algorithm theoretical basis document for GEDI footprint aboveground biomass density. Earth and Space Science, 10(4), e2022EA002516. https://doi.org/10.1029/2022EA002516 [Google Scholar] [Crossref]

24. Khan M.N., Tan Y., Gul A.A., Abbas S., & Wang J. (2024). Forest aboveground biomass estimation and inventory: Evaluating remote sensing-based approaches. Forests, 15(6), 1055. https://doi.org/ 10.3390/ f15061055 [Google Scholar] [Crossref]

25. Köhl M., Neupane P.R., & Mundhenk P. (2020). REDD+ measurement, reporting and verification – A cost trap? Implications for financing REDD+ MRV costs by result‑based payments. Ecological Economics, 168, 106513. https://doi.org/10.1016/j.ecolecon.2019.106513 [Google Scholar] [Crossref]

26. Lam C.N., Niculescu S., & Bengoufa S. (2023). Monitoring and mapping floods and floodable areas in the Mekong Delta (Vietnam) using time-series Sentinel-1 images, convolutional neural network, multi-layer perceptron, and random forest. Remote Sensing, 15(8), 2001. https://doi.org/ 10.3390/ rs15082001 [Google Scholar] [Crossref]

27. Lehner B. (2022). HydroSHEDS Technical Documentation – Data Version 1.1. https:// data.hydrosheds.org/file/technical-documentation/HydroSHEDS_TechDoc_v1_4.pdf [Google Scholar] [Crossref]

28. Loh H.Y., James D., Ioki K., Wong W.V.C., Tsuyuki S., & Phua M.H. (2022). Estimating aboveground biomass changes in a human modified tropical montane forest of Borneo using multi temporal airborne LiDAR data. Remote Sensing Applications: Society and Environment, 28, 100821. https:// doi.org/10.1016/j.rsase.2022.100821 [Google Scholar] [Crossref]

29. Luo M., Anees S.A., Huang Q., Xin Q., Qin Z., Fan J., Han G., Zhang L., & Shafri H.Z.M. (2024). Improving forest above-ground biomass estimation by integrating individual machine learning models. Forests, 15 (6), 975. https://doi.org/10.3390/f15060975 [Google Scholar] [Crossref]

30. Miettinen J., Shi C., & Liew S.C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67–78. https://doi.org/10.1016/j.gecco.2016.02.004 [Google Scholar] [Crossref]

31. Mishra S., Page S.E., Cobb A.R., Lee J.S.H., Jovani-Sancho A.J., Sjögersten S., Jaya A., Aswandi, Wardle D.A. (2021). Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7), 1370–1387. https://doi.org/10.1111/1365-2664.13905 [Google Scholar] [Crossref]

32. Musthafa M., & Singh G. (2022). Improving forest above ground biomass retrieval using multi sensor L and C band SAR data and multi temporal spaceborne LiDAR data. Forest Disturbance, 5, 822704. https://doi.org/10.3389/ffgc.2022.822704 [Google Scholar] [Crossref]

33. Naik P., Dalponte M., & Bruzzone L. (2021). Prediction of forest aboveground biomass using multitemporal multispectral remote sensing data. Remote Sensing, 13(7), 1282. https://doi.org/ 10.3390/rs13071282 [Google Scholar] [Crossref]

34. Nam V.T., Kuijk M.V., & Anten N.P.R. (2016). Allometric equations for aboveground and belowground biomass estimations in an evergreen forest in Vietnam. Research Article, 11(6), e0156827. https://doi.org/10.1371/journal.pone.0156827 [Google Scholar] [Crossref]

35. Ngo D.T., Nguyen H.D., Nguyen K.D.T., Dang C.K., Dang N.K., & Pham T.V. (2023). Application of multispectral UAV to estimate mangrove biomass in Vietnam: A case study in Dong Rui commune, Quang Ninh province. One Ecosystem, 8, e103760. https://doi.org/10.3897/oneeco.8.e103760 [Google Scholar] [Crossref]

36. Nguyen H.K.L., & Nguyen B.N. (2017). Mapping biomass and carbon stock of forest by remote sensing and GIS technology at Bach Ma National park, Thua Thien Hue province. Journal of Vietnamese Environment, 8(2), 80-87. https://doi.org/10.13141/JVE.VOL8.NO2.PP80-87 [Google Scholar] [Crossref]

37. Nguyen L.V., Tateishi R., Kondoh A., Sharma R.C., Nguyen H.T., To T.T., & Minh D.H.T. (2016). Mapping tropical forest biomass by combining ALOS-2, LANDSAT 8, and field plots data. Land, 5(4). https://doi.org/10.3390/LAND5040031 [Google Scholar] [Crossref]

38. Nguyen T.P., Nguyen P.K., Nguyen H.N., Tran T.D., Pham G.T., Le T.H., Le D.H., Nguyen T.H., & Nguyen, V. B. (2024). Evaluation of statistical and machine learning models using satellite data to estimate aboveground biomass: A study in Vietnam tropical forests. Forest Science and Technology, 20(4), 370-382. https://doi.org/10.1080/21580103.2024.2409211 [Google Scholar] [Crossref]

39. Pekel J.F., Cottam A., Gorelick N., & Belward A.S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418–422. https://doi.org/10.1038/nature20584 [Google Scholar] [Crossref]

40. Roberts D.R., Bahn V., Ciuti S., Boyce M.S., Elith J., Guillera-Arroita G., Hauenstein S., Lahoz-Monfort J.J., Schröder B., Thuiller W., Warton D.I., Wintle B.A., Hartig F., & Dormann C.F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. https://doi.org/10.1111/ecog.02881 [Google Scholar] [Crossref]

41. Shimada M., Itoh T., Motooka T., Watanabe M., Shiraishi T., Thapa R., & Lucas R. (2014). New global forest/non‑forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of Environment, 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 [Google Scholar] [Crossref]

42. Tootchi A., Jost A., & Ducharne A. (2019). Multi‑source global wetland maps combining surface water imagery and groundwater constraints. Earth System Science Data, 11(1), 189–220. https://doi.org/ 10.5194/essd-11-189-2019 [Google Scholar] [Crossref]

43. Tran D.B., Hoang T.V., & Dargusch P. (2015). An assessment of the carbon stocks and sodicity tolerance of disturbed Melaleuca forests in Southern Vietnam. Carbon Balance and Management, 10, 15. https:// doi.org/10.1186/s13021-015-0025-6 [Google Scholar] [Crossref]

44. Tran K.H., Menenti M., & Jia L. (2022). Surface water mapping and flood monitoring in the Mekong Delta using Sentinel-1 SAR time series and Otsu threshold. Remote sensing, 14(22), 5721. https://doi.org/10.3390/rs14225721 [Google Scholar] [Crossref]

45. Vafaei S., Soosani J., Adeli K., Fadaei H., Naghavi H., Pham T.D., & Bui D.T. (2018). Improving accuracy estimation of forest above ground biomass based on incorporation of ALOS 2 PALSAR 2 and Sentinel 2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens., 10(2), 172. https://doi.org/10.3390/rs10020172 [Google Scholar] [Crossref]

46. Valavi R., Elith J., Lahoz Monfort J.J., & Guillera Arroita G. (2019). BlockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225-232. https://doi.org/10.1111/2041-210X.13107 [Google Scholar] [Crossref]

47. Wang Y., Jia X., Chai G., Lei L., & Zhang X. (2023). Improved estimation of aboveground biomass of regional coniferous forests integrating UAV-LiDAR strip data, Sentinel-1 and Sentinel-2 imageries. Plant Methods 19, 65. https://doi.org/10.1186/s13007-023-01043-9 [Google Scholar] [Crossref]

48. Weisbin C.R., Lincoln W., & Saatchi S. (2013). A systems engineering approach to estimating uncertainty in above‐ground biomass (AGB) derived from remote‐sensing data. Systems Engineering, 17(3), 361–373. https://doi.org/10.1002/sys.21275 [Google Scholar] [Crossref]

49. Wu Q. (2020). geemap: A Python package for interactive mapping with Google Earth Engine. Journal of Open Source Software, 5(51), 2305. https://doi.org/10.21105/joss.02305 [Google Scholar] [Crossref]

50. Yan Y., Lei J., & Huang Y. (2024). Forest aboveground biomass estimation based on unmanned aerial vehicle-light detection and ranging and machine learning. Sensors, 24(21), 7071. https://doi.org/ 10.3390/s24217071. [Google Scholar] [Crossref]

51. Zadbagher E., Marangoz M.A., & Becek K. (2024). Estimation of above ground biomass using machine learning approaches with InSAR and LiDAR data in tropical peat swamp forest of Brunei Darussalam. iForest - Biogeosciences and Forestry, 17(3), 172-179. https://doi.org/10.3832/ifor4434-017 [Google Scholar] [Crossref]

52. Zhang L., Shao Z., Liu J., & Cheng Q. (2019). Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sensing, 11(12), 1459. https://doi.org/ 10.3390/rs11121459 [Google Scholar] [Crossref]

53. Zhang Y., Ma J., Liang S., Li X., & Li M. (2020). An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sensing, 12(24), 4015. https://doi.org/10.3390/rs12244015 [Google Scholar] [Crossref]

54. Zhu Z. (2017). Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370-384. https://doi.org/10.1016/j.isprsjprs.2017.06.0 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles