Developing an Android-Based Smart Healthcare System for Enhanced Diabetes Prediction Using Data Mining Techniques

Authors

Kudzai Mauya

Community and Social Development, University of Zimbabwe (Zimbabwe)

Richard P. Kamonere

Community and Social Development, University of Zimbabwe (Zimbabwe)

Farai Mutindindi

Community and Social Development, University of Zimbabwe (Zimbabwe)

Luckmore Manyere

Community and Social Development, University of Zimbabwe (Zimbabwe)

Jemitayi Nhidza

Community and Social Development, University of Zimbabwe (Zimbabwe)

Robson Chagweda

Community and Social Development, University of Zimbabwe (Zimbabwe)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000071

Subject Category: Healthcare Technology

Volume/Issue: 10/10 | Page No: 871-885

Publication Timeline

Submitted: 2025-09-16

Accepted: 2025-09-21

Published: 2025-11-07

Abstract

This research paper focuses on the development and evaluation of an Android-based smart healthcare system designed to enhance diabetes diagnosis using data mining techniques. Addressing the limitations of traditional healthcare in resource-constrained environments like Zimbabwe, this study leverages integrated Electronic Health Records (EHRs) from the Zimbabwe Defence Forces clinics. The system employs an ensemble machine learning model, combining Support Vector Machines (SVM) and Naïve Bayes, to provide accurate diabetes prediction. Through a mixed-methods approach and action research, the study evaluated the system's effectiveness and its impact on healthcare delivery. Findings indicate that the ensemble model significantly improves diagnostic accuracy for diabetes, achieving approximately 75% prediction capability. This work contributes a viable mobile health solution that facilitates early diabetes diagnosis, improves patient management, and enhances healthcare accessibility in similar settings, thereby promoting a paradigm shift towards technology-driven healthcare.

Keywords

Healthcare Technology

Downloads

References

1. Abnoosian, M., et al. (2023). Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. BMC Bioinformatics, 24(1), 337. [Google Scholar] [Crossref]

2. Abubeker, A., et al. (2025). Advanced applications in chronic disease monitoring using IoT mobile sensing device data, machine learning algorithms and frame theory: a systematic review. Frontiers in Public Health, 13. [Google Scholar] [Crossref]

3. Aggarwal, C. C. (2015). Data Mining: The Textbook. New York: Springer Nature Switzerland AG. doi: 10.1016/0304-3835(81)90152-X. [Google Scholar] [Crossref]

4. Ahmad, P., Qamar, S. and Qasim Afser Rizvi, S. (2015). Techniques of Data Mining In Healthcare: A Review. International Journal of Computer Applications, 120(15), pp. 38–50. doi: 10.5120/21307-4126. [Google Scholar] [Crossref]

5. Al-Mekhlafi, M., et al. (2023). A Mobile App That Addresses Interpretability Challenges in Machine Learning–Based Diabetes Predictions. JMIR Medical Informatics, 11(1), e46714. [Google Scholar] [Crossref]

6. Ali, S., et al. (2023). An ensemble learning approach for diabetes prediction using boosting techniques. Frontiers in Genetics, 14, 1252159. [Google Scholar] [Crossref]

7. Alzboon, S. M. (2025). Diabetes Prediction and Management Using Machine Learning Approaches. arXiv preprint arXiv:2506.11501. [Google Scholar] [Crossref]

8. Ayoade, O. B., Shahrestani, S., & Ruan, C. (2025). Machine Learning and Deep Learning Approaches for Predicting Diabetes Progression: A Comparative Analysis. Preprints.org. [Google Scholar] [Crossref]

9. Baitharu, T. R. and Pani, S. K. (2016). Analysis of Data Mining Techniques for Healthcare Decision Support System Using Liver Disorder Dataset. Procedia Computer Science, 85(Cms), pp. 862–870. doi: 10.1016/j.procs.2016.05.276. [Google Scholar] [Crossref]

10. Banka, S., Madan, I. and Saranya, S. S. (2018). Smart Healthcare Monitoring using IoT. International Journal of Advanced Research in Computer Science, 13(15), pp. 11984–11989. [Google Scholar] [Crossref]

11. Bhatia, P. (2019). Data mining and data warehousing: Principles and Practical Techniques. New York: Cambridge University Press. doi: 10.1007/978-3-540-48399-1_10. [Google Scholar] [Crossref]

12. Bryman, A. and Bell, E. (2017). Business Research Methods. Third. Oxford Press. [Google Scholar] [Crossref]

13. Chamatkar, M. A. J. and Butey, P. K. (2014). Importance of Data Mining with Different Types of Data Applications and Challenging Areas. International Journal of Computer Applications, 4(5), pp. 38–41. [Google Scholar] [Crossref]

14. Chen, Y., et al. (2024). Risk prediction of diabetes progression using big data mining with multifarious physical examination indicators. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 17, 1249-1265. [Google Scholar] [Crossref]

15. CMU-Africa. (n.d.). AI Healthcare Research Laboratory. CMU-Africa. Available at: https://www.africa.engineering.cmu.edu/research/ai-healthcare.html (Accessed: 09 July 2025). [Google Scholar] [Crossref]

16. Creswell John W, Creswell J, D. (2018). Research Design, Qualitative and Quantitative and Mixed Methods Approaches. [Google Scholar] [Crossref]

17. Deshpande, S. and Thakare, V. M. (2016). DATA MINING SYSTEM AND APPLICATIONS: A REVIEW. International Journal of Distributed and Parallel systems (IJDPS), (September 2010). doi: 10.5121/ijdps.2010.1103. [Google Scholar] [Crossref]

18. Frontiers. (2025). Advanced applications in chronic disease monitoring using IoT mobile sensing device data, machine learning algorithms and frame theory: a systematic review. Frontiers in Public Health, 13. [Google Scholar] [Crossref]

19. Frontiers. (2025). Perspectives of people with diabetes on AI-integrated wearable devices: perceived benefits, barriers, and opportunities for self-management. Frontiers in Medicine. [Google Scholar] [Crossref]

20. Han, J., Kamber, M. and Pei, J. (2012). Data Mining: Concepts and Techniques. Waltham: Morgan Kaufmann Publishers. doi: 10.1016/C2009-0-61819-5. [Google Scholar] [Crossref]

21. Hooda, P. (2017). Smart Prediction Analysis of Health Issues using Data Mining. International Conference on Recent Trends in Technology and its Impact on Economy of India, pp. 673–678. [Google Scholar] [Crossref]

22. Jadhavar, S. et al. (2019). A Survey of Health Care Support System for Consultation Using Data Mining and Predictive Analytics. INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH (IJEDR), 7(4), pp. 59–63. [Google Scholar] [Crossref]

23. Kantardzic, M. (2020). Data Mining: Concepts, Models, Methods, and Algorithms. 3rd edn. Hoboken, New Jersey: IEE Press. doi: 10.1080/07408170490426107. [Google Scholar] [Crossref]

24. Kirubha, V. and Priya, S. M. (2016). Survey on Data Mining Algorithms in Disease Prediction. International Journal of Computer Trends and Technology (IJCTT), 38(3), pp. 124–128. [Google Scholar] [Crossref]

25. Kothari, C. . (2015). Research Methodology, Methods and Techniques. Second. New Delhi: New Age Publishers. Available at: http://repositorio.unan.edu.ni/2986/1/5624.pdf. [Google Scholar] [Crossref]

26. Larose, D. T. and Larose, C. D. (2015). Data Mining and Predictive Analytics. Edited by D. T. Larose. [Google Scholar] [Crossref]

27. Hoboken: John Wiley & Sons, Inc. [Google Scholar] [Crossref]

28. Lee, J. S., et al. (2025). AI Machine Learning–Based Diabetes Prediction in Older Adults in South Korea: Cross-Sectional Analysis. JMIR Formative Research, 11(1), e57874. [Google Scholar] [Crossref]

29. M and Sagar, B. (2019). A Survey on Data Mining Techniques in Healthcare. International Journal of Advanced Research in Computer Science, 10(1), pp. 1–5. doi: 10.26483/ijarcs.v10i1.6033. [Google Scholar] [Crossref]

30. MDPI. (2025). Development of Non-Invasive Continuous Glucose Prediction Models Using Multi-Modal Wearable Sensors in Free-Living Conditions. Sensors, 25(10), 3207. [Google Scholar] [Crossref]

31. MedCrave Online. (2025). Artificial intelligence for diabetes management – a review. Journal of Diabetes Mellitus and Diagnosis and Control, 12(2). [Google Scholar] [Crossref]

32. Mickelson, K., et al. (2025). Enhancing Fairness in Diabetes Prediction Systems through Smart User Interface Design. medRxiv. [Google Scholar] [Crossref]

33. Mohapatra, S. et al. (2018). Smart Health Care System using Data Mining. Proceedings - 2018 International Conference on Information Technology, ICIT 2018, pp. 44–49. doi: 10.1109/ICIT.2018.00021. [Google Scholar] [Crossref]

34. Mushtaq, Z., et al. (2022). An optimized model for diabetes prediction using voting classification based on ensemble method. Journal of Healthcare Engineering, 2022. [Google Scholar] [Crossref]

35. Nyati-Jokomo, Z. et al. (2020). RoadMApp: A feasibility study for a smart travel application to improve maternal health delivery in a low resource setting in Zimbabwe. BMC Pregnancy and Childbirth, 20(1), pp. 1–12. doi: 10.1186/s12884-020-03200-7. [Google Scholar] [Crossref]

36. Omweri, D. (2024). Artificial Intelligence in African Healthcare: Catalyzing Innovation While Confronting Structural Challenges. Preprints.org. [Google Scholar] [Crossref]

37. Park, K. H., Park, J. and Lee, J. W. (2017). An IoT system for remote monitoring of patients at home. Applied Sciences (Switzerland), 7(3). doi: 10.3390/app7030260. [Google Scholar] [Crossref]

38. Patel, S. and Patel, H. (2016). SURVEY OF DATA MINING TECHNIQUES USED IN HEALTHCARE DOMAIN. International Journal of Information Sciences and Techniques (IJIST), 6(1), pp. 53–60. [Google Scholar] [Crossref]

39. PMC. (2025). Challenges and opportunities of artificial intelligence in African health space. PMC. [Google Scholar] [Crossref]

40. Preprints.org. (2025). Artificial Intelligence in African Healthcare: Catalyzing Innovation While Confronting Structural Challenges. Preprints.org. [Google Scholar] [Crossref]

41. PubMed Central. (2023). Non-Invasive Wearable Devices for Monitoring Vital Signs in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Sensors, 23(23), 9405. [Google Scholar] [Crossref]

42. Ray, A. and Chaudhuri, A. K. (2021). Smart healthcare disease diagnosis and patient management: Innovation, improvement and skill development. Machine Learning with Applications, 3(July 2020), p. 100011. doi: 10.1016/j.mlwa.2020.100011. [Google Scholar] [Crossref]

43. Reddy, G. P. et al. (2019). Smart e-health prediction system using data mining. International Journal of Innovative Technology and Exploring Engineering, 8(6), pp. 787–791. [Google Scholar] [Crossref]

44. Saunders, M., Lewis, P. and Thornhill, A. (2009). Research Methods for business students. London: Pearson Education. doi: 10.1080/09523367.2012.743996. [Google Scholar] [Crossref]

45. Saunders, M. N. K., Lewis, P. and Thornhill, A. (2019). Research Methods for Business Students. 8th edn. Harlow: PEARSON EDUCATION LIMITED. [Google Scholar] [Crossref]

46. Sujatha, R., Sumathy, R. and Anitha, N. R. (2016). A Survey of Health Care Prediction using Data Mining. International Journal of Innovative Research in Science, Engineering and Technology, 5(08), pp. 96–100. doi: 10.15680/IJIRSET.2016.0508032. [Google Scholar] [Crossref]

47. Sundaravadivel, P. et al. (2018). Everything You Wanted to Know About Smart Health Care. IEEE Consumer Electronics Magazine, 7(january), pp. 18–28. doi: 10.1109/MCE.2017.2755378. [Google Scholar] [Crossref]

48. Tian, S. et al. (2019). Smart healthcare: making medical care more intelligent. Global Health Journal, (xxxx), pp. 0–3. doi: 10.1016/j.glohj.2019.07.001. [Google Scholar] [Crossref]

49. Verzijl, D. and Dervojeda, K. (2015). Business Innovation Observatory Internet of Things Smart health. [Google Scholar] [Crossref]

50. Wibamanto, W., Das, D. and Chelliah, S. Al (2020). Smart health prediction system with data mining. International Journal of Current Research and Review, 12(23), pp. 14–19. doi: 10.31782/IJCRR.2020.122332. [Google Scholar] [Crossref]

51. Yin, H. et al. (2018). Smart Healthcare. International Journal of Smart Home, XX(Xx), pp. 1–67. doi: 10.1561/XXXXXXXXXX. [Google Scholar] [Crossref]

52. Zhao, C., Luo, J. and Qiu, J. (2017). A Survey of Smart Healthcare Systems. International Journal of Smart Home, 11(4), pp. 1–10. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles