Enhanced Physico-Mechanical Properties of LDPE Reinforced Using Agro-Wastes as Hybrid Fillers

Authors

Emehige, K. P

Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. P.M.B. 5025 (Nigeria)

Chris-Okafor, P. U

Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. P.M.B. 5025 (Nigeria)

Anarado, C.E

Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. P.M.B. 5025 (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000045

Subject Category: Chemistry

Volume/Issue: 10/10 | Page No: 580-590

Publication Timeline

Submitted: 2025-09-26

Accepted: 2025-10-03

Published: 2025-11-03

Abstract

The environmental persistence of petroleum-based plastics such as low-density polyethylene (LDPE) has necessitated research into eco-friendly alternatives. This study investigates the incorporation of mixed agro-waste fillers; coconut husk, breadfruit hull, and periwinkle shell into LDPE matrices to assess their mechanical, thermal, morphological, solvent imbibitions, and biodegradation properties. The composites were fabricated using injection moulding at filler loadings of 10-40wt% and evaluated according to ASTM standards. Results revealed significant improvements in tensile, compressive, shear, impact, and hardness strengths at 20-30wt% loadings, after which agglomeration reduced performance. Differential Scanning Calorimetry (DSC) indicated melting transitions between 120-170ºC and oxidation stability above 200ºC. Scanning Electron Microscopy (SEM) confirmed uniform filler dispersion at lower loadings and voids at higher concentrations. Solvent imbibitions tests showed negligible water absorption but significant uptake in benzene and toluene, while soil burial tests revealed limited biodegradation, with composites showing moderate weight loss compared to neat LDPE. These findings suggest that agro-waste reinforced LDPE composites can serve as cost-effective, sustainable materials for packaging, household, and light construction applications.

Keywords

LDPE composites, agro-waste fillers, mechanical properties, thermal stability, morphology, solvent imbibition, biodegradation

Downloads

References

1. Abdul Khalil, H.P.S., Bhat, A.H. and Ireana Yusra, A.F. (2012). Green Composites from Sustainable Cellulose Nanofibrils: A Review. Carbohydrate Polymers, 87(2), 963-979. [Google Scholar] [Crossref]

2. Ahmed, K., Nizami, S.S. and Raza, N.Z. (2012). Mechanical, Thermal, and Morphological Properties of Low-density polyethylene Composites. Journal of Applied Polymer Science, 123(2): 802-809. [Google Scholar] [Crossref]

3. AlMaadeed, M.A., Kahraman, R., Khanam, P.N. and Madi, N. (2012). Date Palm wood flour/glass fibre Reinforced Hybrid Composites of Recycled Polypropylene: Mechanical and Thermal Properties. Materials and Design, 42: 289-294 [Google Scholar] [Crossref]

4. Arutchelvi, J., Sudhakar, M., Arkatkar, A., Double, M., Bhaduri, S. and Uppara, P.V. (2008). Biodegradation of Polyethylene and Polypropylene. Indian Journal of Biotechnology, 7: 9-22. [Google Scholar] [Crossref]

5. Azeez, A.A., Raza, M.A. and Abdullah, M. (2020). Mechanical Properties of Polymer Composites: Effect of Filler dispersion and Interfacial Adhesion. Polymer Composites, 41(5): 1875-1890. [Google Scholar] [Crossref]

6. Callister, W.D. and Rethwisch, D.G. (2020). Material Science and Engineering: An Introduction (10th ed.). Wiley. [Google Scholar] [Crossref]

7. Chiellini, E., Corti, A., D’ Antone, S. and Baciu, R. (2003). Oxobiodegradable Carbon Backbone Polymers-Oxidative Degradation of Polyethylene under Accelerated Test Conditions. Polymer Degradation and Stability, 81(2): 341-351. [Google Scholar] [Crossref]

8. Chris-Okafor, P.U., Nwokoye, J.N., Oyom, P.O. and Ilodigwe, C.B. (2018). Effects of Snail Shell Powder on the Mechanical Properties of Low Density Polyethylene (LDPE). London Journal of Research in Science: Natural and Formal 18(4): 7-12. [Google Scholar] [Crossref]

9. Daramola, O.O., Sadiku, R. E. and Akinwekomi, A.D. (2022). Mechanical Properties and Water Absorption Behaviour of Agro-Waste-Filled Polymer Composites: A Review. Journal of Composite Materials, 56(1):89-101. [Google Scholar] [Crossref]

10. Eze, I.O., Nwabanne, J.T. and Okoye, P.U. (2019). Mechanical and Thermal Behavior of Low-density Polyethylene Composites Reinforced with Plantain Peel Powder. Journal of Applied Polymer Science, 136(21), 47582. [Google Scholar] [Crossref]

11. Essabir, H., Hilali, E.M., Elgharad, A. and Bouhfid, R. (2013). Mechanical and Thermal Properties of Bio-Composites Based on Polypropylene Reinforced with Almond Shells Particles. Materials and Design, 89: 96-104. [Google Scholar] [Crossref]

12. George, J., Sreekala, M.S. and Thomas, S. (2016). A Review on Interface Modification and Characterization of Natural Fibre Reinforced Plastic Composites. Polymer Engineering and Science, 41(9): 1471-1485 [Google Scholar] [Crossref]

13. Geyer, R., Jambeck, J.R., and Law, K.L. (2017). Production, Use, and Fate of all Plastics Evermade. Science Advances, 3(7), E1700782. https://doi.org/10.1126/sciadv.1700782. [Google Scholar] [Crossref]

14. Idris, U.D., Hassan, S.B. and Aigbodion, V.S. (2020). Effect of Agro-waste Fillers on Mechanical Properties of Polymer Composites. Materials Research Express, 7(1), 015309 [Google Scholar] [Crossref]

15. Jawaid, M. and Khalil, H.P.S.A. (2011). Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydrate Polymers, 86(1): 1-18. [Google Scholar] [Crossref]

16. Joseph, S., Joseph, K. and Thomas, S. (2020). Effect of Hybridization on the Thermal and Crystallization Behavior of Composites from Polyethylene and Short Sisal Fibers. Polymer Composites, 41(5): 1983-1994 [Google Scholar] [Crossref]

17. Khare, A. and Baruah, S, (2021). Polyethylene: Types, Properties, Manufacturing, and Uses. Materials Today: Proceedings, 38: 456-461. https:doi.org/10.1016/j.matpr.2020.07.499. [Google Scholar] [Crossref]

18. Narancic, T., Cerrone, F., Beagan, N. and O’ Connor, K.E. (2018). Recent Advances in Bioplastics: Application and Biodegradation. Polymers, 10(10): 1161 https://doi.org/10.3390/polym10101161 [Google Scholar] [Crossref]

19. Nwabanne, J.T., Igbokwe, P.K. and Eze, I.O. (2017). Effect of Agro-waste Filler on the Mechanical Properties of Polymer Composites. International Journal of Engineering Research and Technology (IJERT), 6(6): 382-388. [Google Scholar] [Crossref]

20. Nwokoye, J.N., Okoye, P.A.C and Chris-Okafor, P.U. (2024). Impact of Hybrid Biomass Fillers on the Physico-Mechanical and Degradation Properties of Utility Polymers. International Journal of Research and Innovation in Applied Science, 9(9):523-532.https://doi.org/10.51584/IJRIAS.2024. [Google Scholar] [Crossref]

21. Ogudo, M.C., Chris-Okafor, P.U., Nwokoye, J.N. and Anekwe, J.O. (2021). Mixed Agrowaste Biocomposites of Low Density Polyethene; Impact of Fillers on Mechanical, Morphological, Water Imbibition and Biodegradability Properties. American Journal of Polymer Science and Technology. 7 (3):44-49. doi: 10.11648/j.ajpst.20210703.12. [Google Scholar] [Crossref]

22. Ojijo, V. and Ray, S.S. (2013). Processing Strategies in Bionanocomposites: Dispersion, Distribution, and Exfoliation of Nanofillers in Biopolymer Matrices. Progress in Polymer Science, 38(10-11): 1543-1589. [Google Scholar] [Crossref]

23. Osei, A.M., Mensah, B. and Nkrumah, I. (2020). Influence of Filler Loading on the Mechanical Properties of Polymer Composites. Materials Todays: Proceedings, 28, 1414-1420 [Google Scholar] [Crossref]

24. Owonubi, S.J., Malwela, T. and Ray, S.S. (2020). Influence of Bio-Based Fillers on Performance of Polyethylene Composites. Polymer Composites, 41(3), 1154-1163. [Google Scholar] [Crossref]

25. Ragaert, K., Delva, L., and Van Geem, K. (2017). Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Management, 69:24-58. https://doi.org/10.1016/j.wasman.2017.07.044 [Google Scholar] [Crossref]

26. Rahman, M.R., Islam, M.S. and Huque, M.M. (2019). Effect of Filler Loading on Mechanical and Morphological Properties of Polymer Composites. Composites Part A: Applied Science and Manufacturing, 125, 105556. [Google Scholar] [Crossref]

27. Raj, S., Mathew, L. and Thomas, S. (2023). Filler-Matrix Interactions and their Effect on Impact Behavior of Polymer Composites. Composites Science and Technology, 242, 110080. [Google Scholar] [Crossref]

28. Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. (2015). Effect of Plasticizer Type and Concentration on Tensile, Thermal, and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. BioResources, 10(2): 3390-3403. [Google Scholar] [Crossref]

29. Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L. and Fraternali, F. (2017). Recycling of Plastic Solid Water: A State of Art Review and Future Applications. Composites Part B: Engineering, 115: 409-422 [Google Scholar] [Crossref]

30. Sivakumar, M. and Rajini, N. (2016). Water Absorption Behavior of Natural Fiber Reinforced Composites. International Journal of ChemTech Research, 9(3): 466-472. [Google Scholar] [Crossref]

31. Sreekumar, P.A., Joseph, K., Unnikrishnan, G. and Thomas, S. (2007). A Comparative Study on Mechanical Properties of Sisal-Leaf Fiber-Reinforced Polyester Composites Prepared by Resin Transfer and Compression Molding Techniques. Composites Science and Technology, 67(3-4): 453-461 [Google Scholar] [Crossref]

32. Thakur, V.K., Singha, A.S. and Thakur, M.K. (2014). Hybrid Polymer Composites Materials: Structure, Mechanical Properties, and Applications. Journal of Industrial and Engineering Chemistry, 20(6): 3780-3790. https://doi.org/10.1016/j.jiec.2013.12.011 [Google Scholar] [Crossref]

33. Zhang, L., Chen, F. and Deng, H. (2018). Effect of Filler type on Crystallization Behavior and Thermal Stability of Polyethylene Composites. Thermochimica Acta, 669: 30-37. [Google Scholar] [Crossref]

34. Zhu, S., Guo, Y., Tu, D., Chen, Y., Liu, S., Li, W. and Wang, L. (2018). ‘Water Absorption, Mechanical, and Crystallization Properties of High-Density Polyethylene Filled with Corn Cob Powder,’ BioResources, 13(2):3778-3792. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles