Ethanolic Leaf Extract of Aloe Barbadensis (Aloe Vera) Mitigates Mercury Induced Alzheimer –Like Symptoms on Basal Ganglia of Albino Wistar Rats

Authors

Ezeani, J. O

Department of Human Anatomy,Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

Nwakanma, A. A

Department of Human Anatomy,Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

Elemuo, S. C

Department of Human Anatomy,Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

Anyiam, K. E

Department of Human Anatomy,Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.10100000154

Subject Category: Anatomy

Volume/Issue: 10/10 | Page No: 1753-1767

Publication Timeline

Submitted: 2025-10-09

Accepted: 2025-10-16

Published: 2025-11-18

Abstract

Mercury exposure has been linked with numerous neurological disorders that frequently trigger Alzheimer’s disease through oxidative stress processes. This study aims to determine the ameliorative potential of Aloe barbadensis on mercury induced Alzheimer- like symptoms on basal ganglia of wistar rats. Thirty-five wistar rats with average weight 150g were randomly divided into five groups designated A-E with seven rats per group. Group A served as the control and did not receive any treatment, group B received 5mg/kg mercury chloride only for three weeks, group C received 500mg/kg of ethanolic extract of Aloe barbadensis for 3 weeks, groups D and E received 5mg/kg of mercury chloride for 3 weeks followed by 250mg/kg and 500mg/kg of ethanolic extract of Aloe barbadensis for 3 weeks respectively. All administrations were via oral gavage. Anxiety index and recognition memory were evaluated using open field and novel object recognition tests. Blood was obtained via ocular puncture for serum estimation of superoxide dismutase (SOD), malondialdehyde (MDA) levels. Brain tissue obtained were homogenized for estimation of Acetylcholinesterase (AChE) and glutamate levels and also processed for routine Hematoxylin and eosin and silver Beilschowsky staining. Results of the neurobehavioural tests showed significant (P<0.05) increase in anxiety indexwhen comparand significant decrease (P<0.05) in recognition index in group B. There was significant (P<0.05) decrease in SOD, AChE, glutamatelevels in group B compared with groups A, C, D and E while there was a significant increase (P<0.05) in MDA levels in group B. Histological study of the basal ganglia showed pyknotic nuclei in group B while silver beilschowsky stain revealed amyloid plaques deposition in group B. These results revealed that mercury chloride caused oxidative stress, anxiety, reduced AChE and glutamate levels, pyknosis and deposition of amyloid plaques on the basal ganglia and Aloe Barbadensis ethanolic extract mitigated these effects and may be useful in the management of Alzheimer –like symptoms.

Keywords

Mercury chloride, oxidative stress, amyloid plaques, Alzheimer’s disease, Aloe barbadensis

Downloads

References

1. Al-Attar, A. M., and Abu Zeid, I. M. (2013). Effect of tea (camellia sinensis) and olive (olea europaea L.) leaves extracts on male mice exposed to diazinon. BioMed Research International, 2013, 1–6. https://doi.org/10.1155/2013/461415 [Google Scholar] [Crossref]

2. Albrecht, J., & Matyja, E. (1996). Metabolic Brain Disease, 11(3), 175–184. https://doi.org/10.1007/BF02069504 [Google Scholar] [Crossref]

3. Bamigboye, S. O. et al. (2020). Neuroprotective effects of aqueous extract of Aloe barbadensis on cortical cells. Nigerian Journal of Natural Products and Medicine, 23(1). https://www.ajol.info/index.php/njnpm/article/view/195768 [Google Scholar] [Crossref]

4. Ben-Azu, B., Oghorodi, A. M., Oritsemuelebi, B., & Chidebe, E. O. (2024). A case for the neuroprotective potential of African phytochemicals in the management of Alzheimer’s disease. In Cognitive Human Neuroscience – From Assessment to Neuroprotection. IntechOpen. https://www.intechopen.com/chapters/89142 [Google Scholar] [Crossref]

5. Chamoli, A., and Karn, S. K. (2024). The Effects of Mercury Exposure on Neurological and Cognitive Dysfunction in Human: A Review. In N. Kumar (Ed.), Mercury Toxicity Mitigation: Sustainable Nexus Approach (pp. 117–135). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48817-7_5 [Google Scholar] [Crossref]

6. Enogieru, A. B., Hayatudeen, N., & Omotoso, G. O. (2023). Protective effects of Aloe barbadensis against mercury-induced neurotoxicity in rats. Journal of Phytomedicine and Therapeutics, 22(1), 45–56. https://www.ajol.info/index.php/jopat/article/view/284522 [Google Scholar] [Crossref]

7. Enogieru, A., and Omoruyi, S. (2022). Exploration of Aqueous Phyllanthus amarus Leaf Extract as a Protective Agent in Mercury Chloride-Exposed Wistar Rats: A Neurobehavioural Study. Journal of Applied Sciences and Environmental Management, 26, 629–637. https://doi.org/10.4314/jasem.v26i4.10 [Google Scholar] [Crossref]

8. Españo, E., Kim, J., and Kim, J.-K. (2022). Utilization of Aloe Compounds in Combatting Viral Diseases. In Pharmaceuticals (Vol. 15, Issue 5, p. 599). https://doi.org/10.3390/ph15050599 [Google Scholar] [Crossref]

9. Hamdan, A. M. E., Alharthi, F. H. J., Alanazi, A. H., & El-Emam, S. Z. (2022). Neuroprotective effects of phytochemicals against aluminum chloride-induced Alzheimer’s disease through ApoE4/LRP1, Wnt3/β-Catenin/GSK3β, and TLR4/NLRP3 pathways. Pharmaceuticals, 15(8), 1008. https://doi.org/10.3390/ph15081008 [Google Scholar] [Crossref]

10. Khedraoui, M. et al. (2025). Aloe vera compounds show promise in Alzheimer's disease treatment. https://www.eurekalert.org/news-releases/1100055 [Google Scholar] [Crossref]

11. Kim, Y., and Kim, J. W. (2012). Toxic Encephalopathy. Safety and Health at Work, 3(4), 243–256. https://doi.org/https://doi.org/10.5491/SHAW.2012.3.4.243 [Google Scholar] [Crossref]

12. Korczyn, A. D., and Grinberg, L. T. (2024). Is Alzheimer disease a disease? Nature Reviews Neurology, 20(4), 245–251. https://doi.org/10.1038/s41582-024-00940-4 [Google Scholar] [Crossref]

13. Kumari, K., & Chand, G. B. (2023). Effects of mercury: Neurological and cellular perspective. In Environmental Science and Engineering (pp. 141–162). Springer. https://link.springer.com/chapter/10.1007/978-981-99-7719-2_5 [Google Scholar] [Crossref]

14. Maan, A. A., Nazir, A., Khan, M. K. I., Ahmad, T., Zia, R., Murid, M., and Abrar, M. (2018). The therapeutic properties and applications of Aloe vera: A review. Journal of Herbal Medicine, 12, 1-10. https://doi.org/10.1016/j.hermed.2018.01.002 [Google Scholar] [Crossref]

15. Mair, R. G., Francoeur, M. J., Krell, E. M., and Gibson, B. M. (2022). Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Frontiers in Behavioral Neuroscience, 16, 928610. https://www.frontiersin.org/journals/behavioralneuroscience/articles/10.3389/fnbeh.2022.928610 [Google Scholar] [Crossref]

16. Matei, A., Popescu, M., & Ionescu, A. (2025). Phytochemical modulation of neuroinflammation: Therapeutic prospects of Aloe barbadensis. Neurobiology of Disease, 185, 106045. https://doi.org/10.1016/j.nbd.2025.106045 [Google Scholar] [Crossref]

17. Mesquita, M., Pedroso, T. F., Oliveira, C. S., Oliveira, V. A., Do Santos, R. F., Bizzi, C. A., and Pereira, M. E. (2016). Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2exposure. EXCLI Journal, 15(valence 0), 256–267. https://doi.org/10.17179/excli2015-709 [Google Scholar] [Crossref]

18. Nabil, A., Elshemy, M. M., Asem, M., and Gomaa, H. F. (2020). Protective Effect of DPPD on Mercury Chloride-Induced Hepatorenal Toxicity in Rats. Journal of Toxicology, 2020, 1–7. https://doi.org/10.1155/2020/4127284 [Google Scholar] [Crossref]

19. Nwozo, O. S., Effiong, E. M., Aja, P. M., and Awuchi, C. G. (2023). Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties, 26(1), 359–388. https://doi.org/10.1080/10942912.2022.2157425 [Google Scholar] [Crossref]

20. Pammi, S. S. S., Suresh, B., and Giri, A. (2023). Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26(1), 13–26. https://doi.org/10.1007/s12892-022-00159-z [Google Scholar] [Crossref]

21. Prajwal, S., & Kumar, M. R. (2022). The neuroprotective effects of medicinal plants on Alzheimer’s disease: A review. Asian Journal of Advances in Medical Science, 4(1), 135–146. https://journalmedicals.com/index.php/AJOAIMS/article/view/110 [Google Scholar] [Crossref]

22. Sánchez, M., González-Burgos, E., Iglesias, I., and Gómez-Serranillos, M. P. (2020). Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. In Molecules (Vol. 25, Issue 6, p. 1324). https://doi.org/10.3390/molecules25061324 [Google Scholar] [Crossref]

23. Silva, M. V. F., Loures, C. de M. G., Alves, L. C. V., de Souza, L. C., Borges, K. B. G., and Carvalho, M. das G. (2019). Alzheimer’s disease: risk factors and potentially protective measures. Journal of Biomedical Science, 26(1), 33. https://doi.org/10.1186/s12929-019-0524-y [Google Scholar] [Crossref]

24. Teixeira, F. B., de Oliveira, A. C. A., Leão, L. K. R., Fagundes, N. C. F., Fernandes, R. M., Fernandes, L. M. P., da Silva, M. C. F., Amado, L. L., Sagica, F. E. S., de Oliveira, E. H. C., Crespo-Lopez, M. E., Maia, C. S. F., and Lima, R. R. (2018). Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex. In Frontiers in Molecular Neuroscience (Vol. 11, p. 337445). https://www.frontiersin.org/articles/10.3389/fnmol.2018.00125 [Google Scholar] [Crossref]

25. Velázquez-López, L., Martínez-González, C. L., & Ramírez-Moreno, E. (2023). Neuroprotective effects of Aloe vera on oxidative stress and memory impairment: A review. Journal of Ethnopharmacology, 310, 116295. https://doi.org/10.1016/j.jep.2023.116295 [Google Scholar] [Crossref]

26. Yılmaz, A., et al. (2021). Journal of Anatolian Environmental and Animal Sciences, 6(3), 376–381. https://doi.org/10.35229/jaes.953830 [Google Scholar] [Crossref]

27. Yu, P. H., Wright, S., Fan, E. H., Lun, Z. R., and Gubisne-Harberle, D. (2003). Physiological and pathological implications of semicarbazide-sensitive amine oxidase. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles