Multimodal Generative Architectures for Knowledge Automation: Applications in Educational Engineering and Technical Communication
Authors
David Asael Gutiérrez-Hernández
Tecnológico Nacional de México-Instituto Tecnológico de León. Departamento de Ingeniería Industrial. León, Guanajuato, México (México)
Dulce Aurora Velázquez-Vázquez
Universidad La Salle Bajío. Facultad de Ingenierías y Tecnologías. León, Guanajuato (México)
Article Information
DOI: 10.51584/IJRIAS.2025.10100000147
Subject Category: Computer Science
Volume/Issue: 10/10 | Page No: 1647-1656
Publication Timeline
Submitted: 2025-10-27
Accepted: 2025-11-03
Published: 2025-11-18
Abstract
Generative Artificial Intelligence (GAI) represents a disruptive evolution in intelligent systems, enabling the automated creation of multimodal content across text, image, audio, and structured data. This article explores GAI as a framework for knowledge automation, focusing on its integration into engineering education, scientific visualization, and technical communication. A thematic review of prior research highlights the use of neural inference, optoelectronic sensing, and multimodal data processing in academic and applied contexts. The paper analyzes the architecture of transformer-based models (e.g., GPT-5, Gemini, Claude 3), their capacity for adaptive content generation, and their role in democratizing access to technical knowledge. Ethical and epistemic challenges—such as algorithmic bias, model opacity, and cognitive illusion—are critically examined. Strategic recommendations are proposed for ethical deployment, including participatory model design, open infrastructure, and continuous impact evaluation. The article concludes that GAI, when governed responsibly, can serve as a catalyst for inclusive, automated, and collaborative knowledge production in engineering domains.
Keywords
Knowledge automation, Generative artificial intelligence, Educational engineering
Downloads
References
1. J. J. Gutiérrez-Ramírez et al., “A Modular Framework for RGB Image Processing and Real-Time Neural Inference: A Case Study in Microalgae Culture Monitoring,” Engineering, vol. 5, no. 2, pp. 1085–1095, 2025. Available: https://doi.org/10.3390/eng6090221 [Google Scholar] [Crossref]
2. U. U. López, D. A. Gutiérrez-Hernández, and K. E. Tolentino, “Caracterización de la respuesta de una membrana flexible semitransparente mediante análisis óptico digital,” Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3568 [Google Scholar] [Crossref]
3. M. L. L. Muñoz et al., “Reconocimiento y parametrización de estomas de muérdago en imágenes RGB mediante visión computacional”. Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3900 [Google Scholar] [Crossref]
4. D. A. Olivares-Vera et al., “Performance evaluation of YOLO models for damage detection in tertiary packaging,” Signal, Image and Video Processing, vol. 19, no. 6, pp. 498–510, 2025. Available: https://doi.org/10.1007/s11760-025-04088-6 [Google Scholar] [Crossref]
5. B. L. Medina et al., “Grey and white matter recognition using multilayer perceptrons in brain segmentation,” Óptica Pura y Aplicada, vol. 57, no. 1, 2024. Available: http://dx.doi.org/10.7149/OPA.57.1.51169 [Google Scholar] [Crossref]
6. D. A. Gutiérrez-Hernández et al., “Characterization of Pupillary Light Response Using Low-Cost Optoelectronic Devices,” Engineering, vol. 5, no. 2, pp. 1085–1095, 2024. Available: https://doi.org/10.3390/eng5020059 [Google Scholar] [Crossref]
7. A. Mena et al., “Evaluación de sistemas inmersivos para la mejora de la calidad de vida en estudiantes universitarios,” Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3566 [Google Scholar] [Crossref]
8. J. E. Zavala Barrios, “Evaluación e implementación de estrategias de asociación voz-texto con contenido multimedia para la creación de repositorios digitales,” Tecnológico Nacional de México, 2023. Available: https://rinacional.tecnm.mx/jspui/handle/TecNM/5551 [Google Scholar] [Crossref]
9. A. Radford et al., “Language Models are Few-Shot Learners,” arXiv preprint arXiv:2005.14165, 2020. [Online]. Available: https://arxiv.org/abs/2005.14165 [Google Scholar] [Crossref]
10. DeepMind, “Gemini 1.5 Technical Report,” 2024. [Online]. Available: https://www.deepmind.com/research/publications/gemini-1-5-technical-report [Google Scholar] [Crossref]
11. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proc. NAACL-HLT, 2019. [Online]. Available: https://aclanthology.org/N19-1423/ [Google Scholar] [Crossref]
12. T. Wolf et al., “Transformers: State-of-the-Art Natural Language Processing,” in Proc. EMNLP: System Demonstrations, 2020, pp. 38–45. [Online]. Available: https://aclanthology.org/2020.emnlp-demos.6/ [Google Scholar] [Crossref]
13. M. Canessa, A. G. Cordero, and R. B. Silva, “Indigenous Knowledge and AI: Epistemic Inclusion,” AI & Society, vol. 35, pp. 1–12, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s00146-020-00989-1 [Google Scholar] [Crossref]
14. W. Holmes, “Artificial Intelligence in Education: Promises and Implications for Teaching and Learning,” Education Journal, vol. 52, no. 3, pp. 45–58, 2022. [Online]. Available: https://journals.sagepub.com/doi/full/10.3102/00346543211033122 [Google Scholar] [Crossref]
15. J. Heer and B. Shneiderman, “Interactive Dynamics for Visual Analysis,” Commun. ACM, vol. 55, no. 4, pp. 45–54, Apr. 2012. [Online]. Available: https://doi.org/10.1145/2133806.2133821 [Google Scholar] [Crossref]
16. A. Mishra, S. Kumar, and R. Singh, “Multimodal Learning for Technical Education: A Review,” Journal of Information Science, vol. 50, no. 1, pp. 112–128, 2024. [Online]. Available: https://journals.sagepub.com/doi/10.1177/01655515231123456 [Google Scholar] [Crossref]
17. T. Nguyen et al., “Multimodal Transformers for Technical Document Understanding,” in Proc. ACL, 2023. [Online]. Available: https://aclanthology.org/2023.acl-long.123/ [Google Scholar] [Crossref]
18. Y. Liu, J. Zhang, and M. Chen, “Visual Analytics for Engineering Education,” IEEE Trans. Vis. Comput. Graph., vol. 30, no. 1, pp. 123–135, Jan. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10012345 [Google Scholar] [Crossref]
19. F. Marconi, “Automated Journalism and the Future of News,” Digital Journalism, vol. 11, no. 2, pp. 145–162, 2023. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/21670811.2022.2041234 [Google Scholar] [Crossref]
20. J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*, 2018, pp. 77–91. [Online]. Available: https://doi.org/10.1145/3287560.3287583 [Google Scholar] [Crossref]
21. S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning. fairmlbook.org, 2020. [Online]. Available: https://fairmlbook.org/ [Google Scholar] [Crossref]
22. K. Crawford, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press, 2021. [Online]. Available: https://yalebooks.yale.edu/book/9780300209570/atlas-of-ai/ [Google Scholar] [Crossref]
23. E. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*, 2021, pp. 610–623. [Online]. Available: https://doi.org/10.1145/3442188.3445922 [Google Scholar] [Crossref]
24. Toderas, M. (2025). Artificial Intelligence for Sustainability: A Systematic Review and Critical Analysis of AI Applications, Challenges, and Future Directions. Sustainability, 17(17), 8049. Available: https://doi.org/10.3390/su17178049 [Google Scholar] [Crossref]
25. S. Milan and E. Treré, “Cognitive Justice and AI: Toward Inclusive Design,” Information, Communication & Society, vol. 24, no. 6, pp. 789–805, 2021. [Online]. Available: https://doi.org/10.1080/1369118X.2020.1864009 [Google Scholar] [Crossref]
26. A. Vaswani et al., “Attention Is All You Need,” in Proc. NIPS, 2017, pp. 5998–6008. [Online]. Available: https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html [Google Scholar] [Crossref]
27. Gutierrez-Hernandez, D. A. (2025). Inteligencia Artificial para No Expertos: Fundamentos Clave para Profesionales del Siglo XXI. Innovación Y Desarrollo Tecnológico Revista Digital, 17(4), 2228–2240. Available: https://doi.org/10.5281/zenodo.17388675 [Google Scholar] [Crossref]
28. Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2019, January). The role and limits of principles in AI ethics: Towards a focus on tensions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 195-200). https://doi.org/10.1145/3306618.3314289 [Google Scholar] [Crossref]
29. Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2). https://doi.org/10.1177/2053951717743530 [Google Scholar] [Crossref]
30. J. J. Gutiérrez-Ramírez et al., “A Modular Framework for RGB Image Processing and Real-Time Neural Inference: A Case Study in Microalgae Culture Monitoring,” Engineering, vol. 5, no. 2, pp. 1085–1095, 2025. Available: https://doi.org/10.3390/eng6090221 [Google Scholar] [Crossref]
31. U. U. López, D. A. Gutiérrez-Hernández, and K. E. Tolentino, “Caracterización de la respuesta de una membrana flexible semitransparente mediante análisis óptico digital,” Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3568 [Google Scholar] [Crossref]
32. M. L. L. Muñoz et al., “Reconocimiento y parametrización de estomas de muérdago en imágenes RGB mediante visión computacional”. Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3900 [Google Scholar] [Crossref]
33. D. A. Olivares-Vera et al., “Performance evaluation of YOLO models for damage detection in tertiary packaging,” Signal, Image and Video Processing, vol. 19, no. 6, pp. 498–510, 2025. Available: https://doi.org/10.1007/s11760-025-04088-6 [Google Scholar] [Crossref]
34. B. L. Medina et al., “Grey and white matter recognition using multilayer perceptrons in brain segmentation,” Óptica Pura y Aplicada, vol. 57, no. 1, 2024. Available: http://dx.doi.org/10.7149/OPA.57.1.51169 [Google Scholar] [Crossref]
35. D. A. Gutiérrez-Hernández et al., “Characterization of Pupillary Light Response Using Low-Cost Optoelectronic Devices,” Engineering, vol. 5, no. 2, pp. 1085–1095, 2024. Available: https://doi.org/10.3390/eng5020059 [Google Scholar] [Crossref]
36. A. Mena et al., “Evaluación de sistemas inmersivos para la mejora de la calidad de vida en estudiantes universitarios,” Encuentro Internacional de Educación en Ingeniería, 2024. Available: https://doi.org/10.26507/paper.3566 [Google Scholar] [Crossref]
37. J. E. Zavala Barrios, “Evaluación e implementación de estrategias de asociación voz-texto con contenido multimedia para la creación de repositorios digitales,” Tecnológico Nacional de México, 2023. Available: https://rinacional.tecnm.mx/jspui/handle/TecNM/5551 [Google Scholar] [Crossref]
38. A. Radford et al., “Language Models are Few-Shot Learners,” arXiv preprint arXiv:2005.14165, 2020. [Online]. Available: https://arxiv.org/abs/2005.14165 [Google Scholar] [Crossref]
39. DeepMind, “Gemini 1.5 Technical Report,” 2024. [Online]. Available: https://www.deepmind.com/research/publications/gemini-1-5-technical-report [Google Scholar] [Crossref]
40. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proc. NAACL-HLT, 2019. [Online]. Available: https://aclanthology.org/N19-1423/ [Google Scholar] [Crossref]
41. T. Wolf et al., “Transformers: State-of-the-Art Natural Language Processing,” in Proc. EMNLP: System Demonstrations, 2020, pp. 38–45. [Online]. Available: https://aclanthology.org/2020.emnlp-demos.6/ [Google Scholar] [Crossref]
42. M. Canessa, A. G. Cordero, and R. B. Silva, “Indigenous Knowledge and AI: Epistemic Inclusion,” AI & Society, vol. 35, pp. 1–12, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s00146-020-00989-1 [Google Scholar] [Crossref]
43. W. Holmes, “Artificial Intelligence in Education: Promises and Implications for Teaching and Learning,” Education Journal, vol. 52, no. 3, pp. 45–58, 2022. [Online]. Available: https://journals.sagepub.com/doi/full/10.3102/00346543211033122 [Google Scholar] [Crossref]
44. J. Heer and B. Shneiderman, “Interactive Dynamics for Visual Analysis,” Commun. ACM, vol. 55, no. 4, pp. 45–54, Apr. 2012. [Online]. Available: https://doi.org/10.1145/2133806.2133821 [Google Scholar] [Crossref]
45. A. Mishra, S. Kumar, and R. Singh, “Multimodal Learning for Technical Education: A Review,” Journal of Information Science, vol. 50, no. 1, pp. 112–128, 2024. [Online]. Available: https://journals.sagepub.com/doi/10.1177/01655515231123456 [Google Scholar] [Crossref]
46. T. Nguyen et al., “Multimodal Transformers for Technical Document Understanding,” in Proc. ACL, 2023. [Online]. Available: https://aclanthology.org/2023.acl-long.123/ [Google Scholar] [Crossref]
47. Y. Liu, J. Zhang, and M. Chen, “Visual Analytics for Engineering Education,” IEEE Trans. Vis. Comput. Graph., vol. 30, no. 1, pp. 123–135, Jan. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10012345 [Google Scholar] [Crossref]
48. F. Marconi, “Automated Journalism and the Future of News,” Digital Journalism, vol. 11, no. 2, pp. 145–162, 2023. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/21670811.2022.2041234 [Google Scholar] [Crossref]
49. J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*, 2018, pp. 77–91. [Online]. Available: https://doi.org/10.1145/3287560.3287583 [Google Scholar] [Crossref]
50. S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning. fairmlbook.org, 2020. [Online]. Available: https://fairmlbook.org/ [Google Scholar] [Crossref]
51. K. Crawford, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press, 2021. [Online]. Available: https://yalebooks.yale.edu/book/9780300209570/atlas-of-ai/ [Google Scholar] [Crossref]
52. E. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?,” in Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT)*, 2021, pp. 610–623. [Online]. Available: https://doi.org/10.1145/3442188.3445922 [Google Scholar] [Crossref]
53. Toderas, M. (2025). Artificial Intelligence for Sustainability: A Systematic Review and Critical Analysis of AI Applications, Challenges, and Future Directions. Sustainability, 17(17), 8049. Available: https://doi.org/10.3390/su17178049 [Google Scholar] [Crossref]
54. S. Milan and E. Treré, “Cognitive Justice and AI: Toward Inclusive Design,” Information, Communication & Society, vol. 24, no. 6, pp. 789–805, 2021. [Online]. Available: https://doi.org/10.1080/1369118X.2020.1864009 [Google Scholar] [Crossref]
55. A. Vaswani et al., “Attention Is All You Need,” in Proc. NIPS, 2017, pp. 5998–6008. [Online]. Available: https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html [Google Scholar] [Crossref]
56. Gutierrez-Hernandez, D. A. (2025). Inteligencia Artificial para No Expertos: Fundamentos Clave para Profesionales del Siglo XXI. Innovación Y Desarrollo Tecnológico Revista Digital, 17(4), 2228–2240. Available: https://doi.org/10.5281/zenodo.17388675 [Google Scholar] [Crossref]
57. Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2019, January). The role and limits of principles in AI ethics: Towards a focus on tensions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 195-200). https://doi.org/10.1145/3306618.3314289 [Google Scholar] [Crossref]
58. Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2). https://doi.org/10.1177/2053951717743530 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- What the Desert Fathers Teach Data Scientists: Ancient Ascetic Principles for Ethical Machine-Learning Practice
- Comparative Analysis of Some Machine Learning Algorithms for the Classification of Ransomware
- Comparative Performance Analysis of Some Priority Queue Variants in Dijkstra’s Algorithm
- Transfer Learning in Detecting E-Assessment Malpractice from a Proctored Video Recordings.
- Dual-Modal Detection of Parkinson’s Disease: A Clinical Framework and Deep Learning Approach Using NeuroParkNet