Spectroscopic and Biological Investigations of 4-[(1E)-N-(2-aminophenyl) ethanimidoyl]-3-methyl-1-phenyl-1H-pyrazol-5-ol and its Copper (II) Complex
Authors
Department of Chemistry, Alvan Ikoku Federal University of Education Owerri, Imo State (Nigeria)
Department of Pure & Industrial Chemistry, Chukwuemeka Odumegwu Ojukwu University Uli, Anambra State (Nigeria)
Department of Pure & Industrial Chemistry, Chukwuemeka Odumegwu Ojukwu University Uli, Anambra State (Nigeria)
Department of Science Laboratory Technology, Anambra State Polytechnic, Mgbakwu, Anambra State (Nigeria)
Department of Pure & Industrial Chemistry, Chukwuemeka Odumegwu Ojukwu University Uli, Anambra State (Nigeria)
Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (USA)
Department of Chemistry, Kingsley Ozumba Mbadiwe University, Ideato, Imo State, (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.101100009
Subject Category: Chemistry
Volume/Issue: 10/11 | Page No: 84-98
Publication Timeline
Submitted: 2025-10-28
Accepted: 2025-11-03
Published: 2025-11-29
Abstract
This study reports the synthesis, characterization, and antimicrobial evaluation of a novel Schiff base ligand (4-[(1E)-N-(2-aminophenyl) ethanimidoyl]-3-methyl-1-phenyl-1H-pyrazol-5-ol) derived from 4-acyl pyrazolone and its copper (II) complex. The work aims to correlate the structural modifications induced by metal coordination with variations in biological activity. The experimental procedure involved the condensation of 4-acyl pyrazolone with 1,2-diaminobenzene to form the Schiff base ligand, followed by complexation with copper (II) chloride dihydrate (CuCl₂·2H₂O) to yield the corresponding Cu (II) complex. Structural elucidation was achieved using elemental analysis, molar conductivity, infrared (IR), ultraviolet–visible (UV–Vis), proton nuclear magnetic resonance (¹H NMR), and gas chromatography–mass spectrometry (GC–MS) techniques. Spectroscopic analyses confirmed the formation of the Schiff base through the characteristic azomethine (C=N) absorption at 1636 cm⁻¹ and coordination to Cu(II) via N,N,O donor sites, as evidenced by metal–ligand (M–L) bands at 667.2 cm⁻¹. The Cu(II) complex displayed a higher melting point and molar conductivity than the free ligand, indicating greater thermal stability and a non-electrolytic nature. Antimicrobial activities were assessed against Salmonella typhi, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Candida albicans using the agar well diffusion method following CLSI standards. The Cu(II) complex exhibited enhanced antimicrobial efficacy compared to the free ligand, except against S.aureus. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values further confirmed improved potency upon complexation. The increased activity of the Cu (II) complex is attributed to enhanced lipophilicity and cell membrane permeability in accordance with Tweedy’s chelation theory. Overall, the synthesized Cu (II) complex demonstrates promising potential for development as a broad-spectrum antibacterial and antifungal agent.
Keywords
Schiff base ligand, Copper(II) complex
Downloads
References
1. Achonye, C.C., Ezenweke, L.O., Ojiako, E.N., and Ogbuagu, O.E. (2024). “Synthesis, Characterization and Antimicrobial Activities of Pyrrolidin-2-Ylidene-2,(4-Chlorophenyl) Semicarbazone and Its Cd(II) Complex”. Journal of Materials Science Research and Reviews 7 (4):649–662. https://doi.org/10.9734/jmsrr/2024/v7i4357 [Google Scholar] [Crossref]
2. Ahmed, A. A., Kurama, U. M., Buba, U. S., & Wakil, I. M. (2022). Synthesis and evaluation of antimicrobial activity of two Schiff bases derived from cyclohexylamine. Algerian Journal of Chemical Engineering (AJCE), 1(1), 49–54. [Google Scholar] [Crossref]
3. Alezzy, A. A. M., Alnahari, H., & Al-horibi, S. A. (2022). Short review on metal complexes of Schiff bases containing antibiotic, and bioactivity applications. Journal of Chemistry and Nutritional Biochemistry, 3(2), 44–57. https://doi.org/10.48185/jcnb.v3i2.671 [Google Scholar] [Crossref]
4. Barad, S. V., Chaudhari, K., Jadeja, R. N., Roy, H., & Butcher, R. J. (2023). Cytotoxicity assay and gene expression studies of acylpyrazolone-based square planar Cu(II) complexes: Synthesis, characterization and computations. Journal of Coordination Chemistry, 76(11–12), 1955–1983. [Google Scholar] [Crossref]
5. Ceramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R., & Sinicropi, M. S. (2022). A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics, 11(2), 191. https://doi.org/10.3390/antibiotics11020191 [Google Scholar] [Crossref]
6. Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for antimicrobial susceptibility testing (30th ed.). CLSI document M100. [Google Scholar] [Crossref]
7. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry (5th ed., p. 1150), [Google Scholar] [Crossref]
8. Idemudia, O. G., Sadimenko, A. P., & Hosten, E. C. (2016). Metal complexes of new bioactive pyrazolone phenylhydrazones; crystal structure of 4-acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one phenylhydrazone Ampp-Ph. International Journal of Molecular Sciences, 17(5), 687. https://doi.org/10.3390/ijms17050687 [Google Scholar] [Crossref]
9. Jayarajan, R., Vasuki, G., & Rao, P. S. (2010). Synthesis and antimicrobial studies of tridentate Schiff base ligands with pyrazolone moiety and their metal complexes. Organic Chemistry International, 2010, Article 648589. https://doi.org/10.1155/2010/648589 [Google Scholar] [Crossref]
10. Jensen, B. S. (1959). The synthesis of 1-phenyl-3-methyl-4-acyl pyrazol-5-ones. Acta Chemica Scandinavica, 13(8), 1668–1670. [Google Scholar] [Crossref]
11. Lever, A. B. P. (1984). Inorganic electronic spectroscopy (2nd ed.). Elsevier. [Google Scholar] [Crossref]
12. Manohar, V., Sridhar, M., Jyothi, P., & Battini, S. (2022). Bioactive metal-Schiff base complexes: A review on antimicrobial and anticancer potential. Revista Electronica de Veterinaria, 25(2), Article 1886. https://doi.org/10.69980/redvet.v25i2.1886 [Google Scholar] [Crossref]
13. Mohamed, G. G., Omar, M. M., & Hindy, A. M. (2006). Metal complexes of Schiff bases: Preparation, characterization, and biological activity. Turkish Journal of Chemistry, 30, 361–382 [Google Scholar] [Crossref]
14. Nandini, B., & Amutha Selvi, M. (2025). Metal complexes with Schiff bases – A review of their antimicrobial activities. Current Bioactive Compounds, 21(5), e15734072305971. https://doi.org/10.2174/0115734072305971240816114116 [Google Scholar] [Crossref]
15. Narsidas, P., Shashikant, T., Rikin, P., Hitesh, B., Harshur, J., & Vasudev, T. (2015). Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases. Journal of Saudi Chemical Society, 19, 36–41. [Google Scholar] [Crossref]
16. National Center for Biotechnology Information (NCBI). (2024). PubChem Compound Summary for CID 24749, 3-methyl-1-phenyl-pyrazol-5-one. https://pubchem.ncbi.nlm.nih.gov/compound/24749 [Google Scholar] [Crossref]
17. Okolo, A. J., Ezenweke, L. O., Ojiako, E. N., Oragwu, I. P., Okwuego, P. O., Ogbuagu, O. E., Silas, C. U., & Chukwuemeka, N. U. (2025). Synthesis and antimicrobial study of Fe(II) complex of Schiff base derived from 4-acyl antipyrine and substituted aniline. International Journal of Research and Innovation in Applied Science, 10(10), Article 0031. https://doi.org/10.51584/IJRIAS.2025.1010000031 [Google Scholar] [Crossref]
18. Ogbuagu, O. E., Ezenweke, L. O., Ojiako, E. N., Achonye, C. C., Okolo, A. J., Silas, C. U., & Ndupu, R. O. (2025). Synthesis, spectroscopic characterization and antimicrobial assessment of 4-acetyl pyrazolone Schiff base and its cobalt(II) complex. Journal of Materials Science Research and Reviews, 8(4), 845–866. https://doi.org/10.9734/jmsrr/2025/v8i4445 [Google Scholar] [Crossref]
19. Shaikh, I., Travadi, M., Jadeja, R. N., Butcher, R. J., & Pandya, J. H. (2022). Crystal feature and spectral characterization of Zn(II) complexes containing Schiff base of acylpyrazolone ligand with antimalarial action. Journal of the Indian Chemical Society, 99(5), 100428. https://doi.org/10.1016/j.jics.2022.100428 [Google Scholar] [Crossref]
20. Silas, C. U., Ezenweke, L. O., Enedoh, M. C., Ogbuagu, O. E., & Okolo, A. J. (2025). Synthesis, characterization, and antimicrobial activities of (E)-2-(2-aminothiazol-4-yl)-N'-(2-nitrobenzylidene)acetohydrazide ligand and its Co(II) complex. Journal of Materials Science Research , 8(4), 821–833. https://doi.org/10.9734/jmsrr/2025/v8i4443 [Google Scholar] [Crossref]
21. Wang, J., Xu, G., Zhang, Y., Luo, H., Li, J., Zhang, L., & Jia, D. (2019). Copper(II) complexes with 4-acyl pyrazolone derivatives and diimine coligands: Synthesis, structural characterization, DNA binding and antitumor activity. New Journal of Chemistry, 43, 2529–2539. https://doi.org/10.1039/C8NJ02695E [Google Scholar] [Crossref]
22. Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. [Google Scholar] [Crossref]
23. Xi, W., Song, F., Xia, X., & Song, X. (2020). Tuned structure and DNA binding properties of metal complexes based on a new 4-acylpyrazolone derivative. New Journal of Chemistry, 44, 2281–2290. https://doi.org/10.1039/C9NJ05948B [Google Scholar] [Crossref]
24. Zoubi, W. (2013). Biological activities of Schiff bases and their complexes: A review of recent works. International Journal of Organic Chemistry, 3, 73–95. https://doi.org/10.4236/ijoc.2013.33A008 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications