Sustainable Innovations in Textile Finishing

Authors

Sangeeta Patil

Institute of Chemical Technology, Mumbai (India)

Dr Ashok Athalye

Institute of Chemical Technology, Mumbai (India)

Article Information

DOI: 10.51584/IJRIAS.2025.10100000155

Subject Category: Textile

Volume/Issue: 10/10 | Page No: 1768-1779

Publication Timeline

Submitted: 2025-11-03

Accepted: 2025-11-10

Published: 2025-11-18

Abstract

Textile finishing is essential for improving the quality, functionality, and longevity of fabrics. The finishing methods influence the end aesthetic and functional traits of textiles, making them appropriate for various uses, such as apparel, home decor, and industrial textiles. The finishing process includes various methods that enhance properties like softness, colour stability, wrinkle resistance, water repellency, and antimicrobial effectiveness. Conventional finishing techniques often employ large quantities of water, energy, and chemicals, resulting in significant wastewater that contains harmful residues, heavy metals, and microfibers, which can pose a threat to both aquatic life and human health. With sustainability becoming a key focus in the industry, new finishing methods are emerging to lessen environmental impact while still achieving high-performance standards. As global sustainability awareness grows, businesses and consumers are seeking eco-friendly options. Sustainable textile finishing methods offer innovative approaches that minimise environmental impact while maintaining or enhancing textile quality. Textile manufacturers can find a balance between functionality and sustainability by adopting cleaner technologies, resource-saving processes, and bio-based solutions. Over time, textile finishing has evolved into a process of transforming traditional textiles into technical textiles. The future trend in this area is the creation of multifunctional textiles that are efficient, durable, cost-effective and produced in an environmentally responsible manner. This article examines various sustainable finishing methods, highlighting their benefits and the challenges associated with their adoption.

Keywords

Textile Finishing, Innovations, Resource-Saving

Downloads

References

1. Ahmed, H. M., Mohamed, M. A., & Abdellatif, F. H. H. (2022). Nanoparticles Modifications of Textiles Using Plasma Technology. In Fundamentals of Nano–Textile Science (pp. 145–170). Apple Academic Press. https://doi.org/10.1201/9781003277316-9 [Google Scholar] [Crossref]

2. al kashouty, M., elsayad, H., salem, T., Elhadad, S., & Twaffiek, S. (2020). An overview: Textile surface modification by using sol-gel technology. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2020.24441.2464 [Google Scholar] [Crossref]

3. Azeem, M., Gong, R. H., Hes, L., Masin, I., & Petru, M. (2024). Positive impacts of plasma treatment on comfort properties of textile blends. In Advances in Plasma Treatment of Textile Surfaces (pp. 367–385). Elsevier. https://doi.org/10.1016/B978-0-443-19079-7.00005-1 [Google Scholar] [Crossref]

4. Babaeipour, S., Nousiainen, P., Kimiaei, E., Tienaho, J., Kohlhuber, N., Korpinen, R., Kaipanen, K., & Österberg, M. (2024). Thin multifunctional coatings for textiles based on the layer-by-layer application of polyaromatic hybrid nanoparticles. Materials Advances, 5(15), 6114–6131. https://doi.org/10.1039/D4MA00085D [Google Scholar] [Crossref]

5. Barani, H., & Haji, A. (2024). Comprehensive plasma-enhanced wool advancements. In Advances in Plasma Treatment of Textile Surfaces (pp. 13–36). Elsevier. https://doi.org/10.1016/B978-0-443-19079-7.00007-5 [Google Scholar] [Crossref]

6. Camlibel, N. O., & Arik, B. (2017). Sol-Gel Applications in Textile Finishing Processes. In Recent Applications in Sol-Gel Synthesis. InTech. https://doi.org/10.5772/67686 [Google Scholar] [Crossref]

7. Chandran, D., Rajalingam, S., Viswanathan, M., Mohankumar, P., Krishnan, D., Jisha, A. I., Nair, A. V., & Prashanth, A. (2024). Application of Chitosan in Textiles. In Chitin and Chitosan (pp. 321–349). Jenny Stanford Publishing. https://doi.org/10.1201/9781003589778-11 [Google Scholar] [Crossref]

8. Chen, J. , & Y. D. (2015). (n.d.). Finishing agent for blended fabric made of combed cotton and soybean protein fiber. [Google Scholar] [Crossref]

9. Devi, S., Panghaal, D., Kumar, P., Malik, P., Ravi, E., & Mittal, S. (2025). Eco-Friendly Innovations in Textile Dyeing: A Comprehensive Review of Natural Dyes. Advances in Research, 26(1), 204–212. https://doi.org/10.9734/air/2025/v26i11247 [Google Scholar] [Crossref]

10. Farooq, S., Akhtar, A., Faisal, S., Husain, M. D., & Siddiqui, M. O. R. (2025). Durable multifunction finishing on polyester knitted fabric by applying zinc oxide nanoparticles. Pigment & Resin Technology. https://doi.org/10.1108/PRT-08-2024-0086 [Google Scholar] [Crossref]

11. Fu, C., Wang, Z., Gao, Y., Zhao, J., Liu, Y., Zhou, X., Qin, R., Pang, Y., Hu, B., Zhang, Y., Nan, S., Zhang, J., Zhang, X., & Yang, P. (2023). Sustainable polymer coating for stainproof fabrics. Nature Sustainability, 6(8), 984–994. https://doi.org/10.1038/s41893-023-01121-9 [Google Scholar] [Crossref]

12. GARİP, B., YÜKSEL, A., ÜNAL, S., & BEDELOĞLU, A. (2022). Improving the Water Repellency of Polyester Filament Yarn and Fabrics. Tekstil ve Konfeksiyon. https://doi.org/10.32710/tekstilvekonfeksiyon.1065250 [Google Scholar] [Crossref]

13. Ghazal, H., Maraae, A., Beltagy, Z., shamy, M., Nasser, A., Abd-Elaal, L., & Allam, L. (2024). A Review on Cellulose Nanocrystals (CNCs) as Green Finishing Material to Produce Multifunctional Textiles. Journal of Textiles, Coloration and Polymer Science, 0(0), 0–0. https://doi.org/10.21608/jtcps.2024.259520.1302 [Google Scholar] [Crossref]

14. Hassabo, A., & El-Sayed, E. (2021). Recent advances in the application of plasma in textile finishing (A Review). Journal of Textiles, Coloration and Polymer Science, 0(0), 0–0. https://doi.org/10.21608/jtcps.2021.67798.1050 [Google Scholar] [Crossref]

15. Horii, Y., & Kannan, K. (2019). Main Uses and Environmental Emissions of Volatile Methylsiloxanes (pp. 33–70). https://doi.org/10.1007/698_2019_375 [Google Scholar] [Crossref]

16. Islam, T., Rasel, S. M., Roy, R., Hossen, Md. T., Hossain, S., Rahman, M., Kabir, M., Repon, Md. R., Maurya, S. K., & Jalil, M. A. (2024). Exploring the efficacy of eco-friendly flame-retardant finish for cotton fabric using Banana Pseudostem saps and phytic acid. https://doi.org/10.21203/rs.3.rs-5405235/v1 [Google Scholar] [Crossref]

17. Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing—A Review. Journal of Sol-Gel Science and Technology, 78(3), 698–707. https://doi.org/10.1007/s10971-016-4027-y [Google Scholar] [Crossref]

18. Kamboj, A., Tamta, M., Kundal, P., & Soun, B. (2024). Eco-friendly Dyeing Approach: Natural Dyeing––A Need of the Hour (pp. 91–107). https://doi.org/10.1007/978-981-99-9856-2_7 [Google Scholar] [Crossref]

19. Kandhavadivu, Dr. P. , & P. Dr. M. (2021. (2021). Innovative And Sustainable Design Development for Denim Fabric Using Laser Techniques, Tie and Dye and Manual Whiskering. Journal of Contemporary Issues in Business and Government, 27(6). https://doi.org/10.47750/cibg.2021.27.06.056 [Google Scholar] [Crossref]

20. Karypidis, M., Tarnanidis, T., & Papachristou, E. (2024). Treating Textile Effluents for Sustainable Fashion and Green Marketing (pp. 166–179). https://doi.org/10.4018/979-8-3693-3049-4.ch010 [Google Scholar] [Crossref]

21. Khalil, E., Sarkar, J., Rahman, Md. M., Shamsuzzaman, Md., & Das, D. (2023). Advanced Technology in Textile Dyeing (pp. 97–138). https://doi.org/10.1007/978-981-99-2142-3_4 [Google Scholar] [Crossref]

22. Kreuz, A., Cadorin, L., da Silva, D. B., de Oliveira, V. B., Malschitzky, M. E. T., Zimmermann, L. M., Andreaus, J., & Lukasik, R. M. (2024). Chitosan. In Advances in Renewable Natural Materials for Textile Sustainability (pp. 209–225). CRC Press. https://doi.org/10.1201/9781003459774-11 [Google Scholar] [Crossref]

23. Kreuz, A., da Silva, D. B., & Andreaus, J. (2024). Enzymes for Sustainable Textile Processing. In Advances in Renewable Natural Materials for Textile Sustainability (pp. 244–262). CRC Press. https://doi.org/10.1201/9781003459774-13 [Google Scholar] [Crossref]

24. Kristanti, K., Laila Ramadhani, N., & Pandansari, P. (2024). Ecoprint Techniques as An Environmentally Friendly Fashion Product. Edusight International Journal of Multidisciplinary Studies, 1(2). https://doi.org/10.69726/eijoms.v1i2.34 [Google Scholar] [Crossref]

25. Kumari, K., Singh, A., & Marathe, D. (2023). Cyclic volatile methyl siloxanes (D4, D5, and D6) as the emerging pollutants in environment: environmental distribution, fate, and toxicological assessments. Environmental Science and Pollution Research, 31(27), 38681–38709. https://doi.org/10.1007/s11356-023-25568-7 [Google Scholar] [Crossref]

26. Li, M., M.N., P., & Song, J. (2024). Effect of synthesized lignin-based flame retardant liquid on the flame retardancy and mechanical properties of cotton textiles. Industrial Crops and Products, 212, 118283. https://doi.org/10.1016/j.indcrop.2024.118283 [Google Scholar] [Crossref]

27. Lingling, M. , X. H. , H. B. , C. W. , & X. B. (2016). (n.d.). Soybean protein fiber textile finishing solution. [Google Scholar] [Crossref]

28. Mahmoud, Z. H., & Kianfar, E. (2024). Application of Nano Technology in the Self-Cleaning Finishing of Textiles: A Review. Journal of Textile Engineering and Fashion Technology, 6(1), 01–13. https://doi.org/10.33140/JTEFT.06.01.01 [Google Scholar] [Crossref]

29. Mensah, R. A., Shanmugam, V., Narayanan, S., Renner, J. S., Babu, K., Neisiany, R. E., Försth, M., Sas, G., & Das, O. (2022). A review of sustainable and environment-friendly flame retardants used in plastics. Polymer Testing, 108, 107511. https://doi.org/10.1016/j.polymertesting.2022.107511 [Google Scholar] [Crossref]

30. Nadar, C. G., Arora, A., & Shastri, Y. (2022). Sustainability Challenges and Opportunities in Pectin Extraction from Fruit Waste. ACS Engineering Au, 2(2), 61–74. https://doi.org/10.1021/acsengineeringau.1c00025 [Google Scholar] [Crossref]

31. Nayak, R., George, M., Jajpura, L., Khandual, A., & Panwar, T. (2022). Laser and ozone applications for circularity journey in denim manufacturing - A developing country perspective. Current Opinion in Green and Sustainable Chemistry, 38, 100680. https://doi.org/10.1016/j.cogsc.2022.100680 [Google Scholar] [Crossref]

32. Nisar, S., & Raza, Z. A. (2024). Corn straw lignin — A sustainable bioinspired finish for superhydrophobic and UV-protective cellulose fabric. International Journal of Biological Macromolecules, 257, 128393. https://doi.org/10.1016/j.ijbiomac.2023.128393 [Google Scholar] [Crossref]

33. Nu Nguyen, H. M., Khieu, H. T., Ta, N. A., Le, H. Q., Nguyen, T. Q., Do, T. Q., Hoang, A. Q., Kannan, K., & Tran, T. M. (2021). Distribution of cyclic volatile methylsiloxanes in drinking water, tap water, surface water, and wastewater in Hanoi, Vietnam. Environmental Pollution, 285, 117260. https://doi.org/10.1016/j.envpol.2021.117260 [Google Scholar] [Crossref]

34. Patankar, K. C., Maiti, S., Singh, G. P., Shahid, M., More, S., & Adivarekar, R. V. (2021). Chemically modified wool waste keratin for flame retardant cotton finishing. Cleaner Engineering and Technology, 5, 100319. https://doi.org/10.1016/j.clet.2021.100319 [Google Scholar] [Crossref]

35. Patti, A. (2025). Green Advances in Wet Finishing Methods and Nanoparticles for Daily Textiles. Macromolecular Rapid Communications, 46(2). https://doi.org/10.1002/marc.202400636 [Google Scholar] [Crossref]

36. Periyasamy, A. P., & Militky, J. (2020). Sustainability in Textile Dyeing: Recent Developments (pp. 37–79). https://doi.org/10.1007/978-3-030-38545-3_2 [Google Scholar] [Crossref]

37. Rădulescu, I. R., Visileanu, E., Scarlat, R., Surdu, L., Iordache, O., Mitu, B., Constantin, C., Sătulu, V., Dinca, L., & Morari, C. (2024). Plasma for advanced functionalization of textiles. In Advances in Plasma Treatment of Textile Surfaces (pp. 223–265). Elsevier. https://doi.org/10.1016/B978-0-443-19079-7.00004-X [Google Scholar] [Crossref]

38. Rani, J., Guru, R., Singh, J., & Santhanam, S. (2024). Eco-Dyeing and Functional Finishing of Cotton Fabric Using a Natural Colour Derived From Lotus Seed: Enhanced Fastness Properties with Chitosan. Textile & Leather Review, 7, 1039–1060. https://doi.org/10.31881/TLR.2024.099 [Google Scholar] [Crossref]

39. Reda, E., Ebrahim, S., & Mosaad, M. (2024). An Overview of Dyeing without Water Techniques. Journal of Textiles, Coloration and Polymer Science, 0(0), 0–0. https://doi.org/10.21608/jtcps.2024.259683.1310 [Google Scholar] [Crossref]

40. Sadaf, S., Hassan, K., Saeed, A., & Ahmad, Z. (2024). Antimicrobial Finish for Cotton/polyester from Natural Bio-extracts. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 61(4). https://doi.org/10.53560/PPASB(61-4)760 [Google Scholar] [Crossref]

41. Sadhna, Greeshma, S., & Kumar, R. (2024). Introduction to Climate Action, Waste Management, and Eco-textiles (pp. 1–10). https://doi.org/10.1007/978-981-99-9856-2_1 [Google Scholar] [Crossref]

42. Santosh U Napte, & Prashant P Dixit. (2024). Applications of cellulase enzyme in textile industry purified from Bacillus paramycoides S 5. International Journal of Science and Research Archive, 13(1), 3359–3367. https://doi.org/10.30574/ijsra.2024.13.1.2033 [Google Scholar] [Crossref]

43. Sehrawat, A. (2023). APPLICATIONS OF GREEN CHEMISTRY PRINCIPLES IN TEXTILE WET PROCESSING. Journal of Advanced Scientific Research, 14(09), 1–5. https://doi.org/10.55218/JASR.202314901 [Google Scholar] [Crossref]

44. Sfameni, S., Hadhri, M., Rando, G., Drommi, D., Rosace, G., Trovato, V., & Plutino, M. R. (2023). Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics, 11(1), 19. https://doi.org/10.3390/inorganics11010019 [Google Scholar] [Crossref]

45. Sfameni, S., Lawnick, T., Rando, G., Visco, A., Textor, T., & Plutino, M. R. (2022). Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. Nanomaterials, 12(19), 3404. https://doi.org/10.3390/nano12193404 [Google Scholar] [Crossref]

46. Shabanian, S., Lahiri, S. K., Soltani, M., & Golovin, K. (2023). Durable water- and oil-repellent textiles without long- or short-chain perfluoroalkylated substances. Materials Today Chemistry, 34, 101786. https://doi.org/10.1016/j.mtchem.2023.101786 [Google Scholar] [Crossref]

47. Sharif, R., Mohsin, M., Ramzan, N., Sardar, S., & Anam, W. (2022). Synthesis of Bio-Based Non-Fluorinated Oil and Water Repellent Finishes for Cotton Fabric by Using Palmitic Acid, Succinic Acid, and Maleic Acid. Journal of Natural Fibers, 19(16), 14077–14088. https://doi.org/10.1080/15440478.2022.2116141 [Google Scholar] [Crossref]

48. Šmid, S., Verbič, A., Zemljič, L. F., & Gorjanc, M. (2023). Eco-Finishing of Cotton with Chitosan and Giant Goldenrod ( Solidago gigantea Aiton) Aqueous Extract for Development of Antioxidant and UV Protective Textiles. Journal of Natural Fibers, 20(2). https://doi.org/10.1080/15440478.2023.2253371 [Google Scholar] [Crossref]

49. Tegegne, W., Haile, A., Zeleke, Y., Temesgen, Y., Bantie, H., & Biyable, S. (2024). Natural dyeing and anti bacterial finishing of cotton fabric with extracts from Justicia schimperiana leaf extract: a step towards sustainable dyeing and finishing. International Journal of Sustainable Engineering, 17(1), 52–61. https://doi.org/10.1080/19397038.2023.2301702 [Google Scholar] [Crossref]

50. Tian, W., Huang, K., Zhu, C., Sun, Z., Shao, L., Hu, M., & Feng, X. (2022). Recent progress in biobased synthetic textile fibers. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.1098590 [Google Scholar] [Crossref]

51. Wang, K., Wang, M., Lv, W., Yao, J., Zhang, W., & Li, X. (2019). Optimization and assessment on indirect electrochemical reduction of indigo. Pigment & Resin Technology, 49(2), 154–162. https://doi.org/10.1108/PRT-09-2019-0077 [Google Scholar] [Crossref]

52. Wurm, F., Mann, K., Seidl, B., Kozich, M., Bechtold, T., & Pham, T. (2024). Cotton Fabric Coating by Cationic Starches to Aim for Salt‐Free Reactive Dyeing. ChemistrySelect, 9(40). https://doi.org/10.1002/slct.202403247 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles