Sustainable Transformation of Petroleum Logistics Through Innovative Systems and Governance Synergy
Authors
Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, University Teknologi Malaysia, 81310 UTM JB, Skudai, Johor, (Malaysia) | Transport Technology Center, Nigerian Institute of Transport Technology, NITT, Zaria, P. M. B. 1147, Kaduna State (Nigeria)
Department of Entrepreneurship, Faculty of Management Sciences, Ekiti State University, Ado Ekiti, Ekiti State (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.10100000208
Subject Category: Engineering & Technology
Volume/Issue: 10/10 | Page No: 2559-2571
Publication Timeline
Submitted: 2025-11-10
Accepted: 2025-11-17
Published: 2025-11-26
Abstract
The petroleum logistics sector is a critical yet carbon-intensive component of global energy systems. As pressure mounts to align with low-carbon and circular economy goals, this review examines the convergence of technological and administrative innovations that enable sustainability across upstream, midstream, and downstream logistics. Drawing on literature from 2010 to 2024 and grounded in sustainability transitions and innovation systems theory, the review synthesizes advancements in digital tools (AI, IoT, blockchain), green logistics practices (eco-routing, predictive maintenance), and institutional reforms (governance frameworks, regulatory incentives, sustainable procurement). Key research gaps and policy implications were identified, offering actionable insights for decarbonizing petroleum logistics in pursuit of cleaner production and sustainable development.
Keywords
Petroleum Logistics, Sustainability Transitions, Digital Innovation, Administrative Reform, Digital Technologies
Downloads
References
1. Abeyratne, S. A., & Monfared, R. P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology. [Google Scholar] [Crossref]
2. Abioye, A. M., Okonkwo, E. C., & Adeoye, A. O. (2023). Green entrepreneurship and policy constraints in Nigeria's petroleum logistics. Energy Policy, 177, 113485. https://doi.org/ 10.1016/ j. enpol.2023.113485 [Google Scholar] [Crossref]
3. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analysing the functional dynamics of technological innovation systems: A scheme of analysis. Technological Forecasting and Social Change, 75(4), 555–577. https://doi.org/10.1016/j.techfore.2007.12.003 [Google Scholar] [Crossref]
4. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems. Research Policy, 37(3), 407–429. [Google Scholar] [Crossref]
5. Bocken, N. M. P., Short, S. W., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production. [Google Scholar] [Crossref]
6. Chesbrough, H. (2020). To recover faster from Covid-19, open up: Managerial implications from an open innovation perspective. Industrial Marketing Management. [Google Scholar] [Crossref]
7. Fahimnia, B., Bell, M., & Sarkis, J. (2022). Digital logistics and sustainability: Future directions. Transportation Research Part E, 159, 102624. [Google Scholar] [Crossref]
8. França, C. L., Broman, G. I., Robèrt, K. H., Basile, G., & Trygg, L. (2017). An integrated framework for strategic sustainable development and resilient business. Journal of Cleaner Production, 140, 477–486. [Google Scholar] [Crossref]
9. Garcia-Torres, S., Rey-Garcia, M., & Albareda, L. (2021). Effective adoption of sustainability innovations: The role of stakeholder engagement. Journal of Business Research, 125, 793–803. [Google Scholar] [Crossref]
10. Geels, F. W. (2011). The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental Innovation and Societal Transitions, 1(1), 24–40. https://doi.org/ 10. 1016/j.eist.2011.02.002 [Google Scholar] [Crossref]
11. Geissdoerfer, M., Savaget, P., Bocken, N., & Hultink, E. (2018). Business models for sustainability: Origins, present research, and future avenues. Journal of Cleaner Production, 212, 2208–2217. [Google Scholar] [Crossref]
12. Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production. [Google Scholar] [Crossref]
13. George I.I, Nawawi M. G. M, Jafaar Z.M, Farah B. S. (2023) “Environmental Effects from Petroleum Products Transportation Spillage in Nigeria: A critical review” Journal of Environmental Science and Pollution Research (Springer). https://doi.org/10.1007/s11356-023- 31117-z. Q1. [Google Scholar] [Crossref]
14. George I.I, Nawawi M. G. M, Jafaar Z.M, Onileowo T.T. Haruna Hajara Bamaiyi; (2024); “Environmental Effects of Spills from the Transportation of Petroleum Products: Dynamics, Challenges and Global Perspectives”. Book Chapter: Advances in Environmental Research. Volume 102, pg 113. Nova Science Publishers, Hauppauge, NY 11788 USA. [Google Scholar] [Crossref]
15. Gonzalez-Sanchez, R., et al. (2022). Real-time ESG monitoring in complex supply chains. Resources, Conservation & Recycling, 180, 106183. [Google Scholar] [Crossref]
16. Govindan, K., et al. (2020). Integrated framework for assessing sustainability and innovation in logistics systems. Technological Forecasting and Social Change, 160, 120226. [Google Scholar] [Crossref]
17. Govindan, K., Khodaverdi, R., & Jafarian, A. (2020). A fuzzy multi-objective approach to sustainable petroleum logistics under technological innovation. Journal of Cleaner Production, 277, 124008. https://doi.org/10.1016/j.jclepro.2020.124008 [Google Scholar] [Crossref]
18. Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science. [Google Scholar] [Crossref]
19. IEA. (2020, 2021). International Energy Agency Reports. Retrieved from https://www.iea.org [Google Scholar] [Crossref]
20. IRENA. (2023). Innovation Outlook: Renewable-Powered Logistics. International Renewable Energy Agency. [Google Scholar] [Crossref]
21. Kassem, R., & Trenz, M. (2020). Digital transformation and renewable energy: Strategic insights. Renewable and Sustainable Energy Reviews, 134, 110353. [Google Scholar] [Crossref]
22. Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955–967. https://doi.org/ 10.1016/ j.respol .2012 .02.013 [Google Scholar] [Crossref]
23. Nguyen, N. P., et al. (2023). Sustainability-driven traceability in electric vehicle logistics. Journal of Cleaner Production, 395, 136393. [Google Scholar] [Crossref]
24. Nguyen, T. T., Le, H. D., & Bui, T. A. (2023). ESG-oriented logistics innovations in Southeast Asia: Entrepreneurial perspectives and strategic implications. Journal of Environmental Management, 336, 117631. https://doi.org/10.1016/j.jenvman.2023.117631 [Google Scholar] [Crossref]
25. Onileowo, T. T., Muharam, F. M., & Ramily, M. K. (2022). Financial Structure and Business Development in Southwest Nigeria. Journal of Hunan University Natural Sciences, 49(10). [Google Scholar] [Crossref]
26. Onileowo, T., & Muharam, F. M. (2024). Techno-Entrepreneurship, Relevance Of Techno Entrepreneurship, Challenges of Technology Entrepreneurship. International Journal of Innovation and Business Strategy (IJIBS), 19(1), 1-9. [Google Scholar] [Crossref]
27. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 [Google Scholar] [Crossref]
28. Parida, V., et al. (2019). Circular economy innovation and sustainable logistics: A framework. Sustainability, 11(13), 3621. [Google Scholar] [Crossref]
29. Parry, I. W. H., Veung, C., & Heine, D. (2022). How should petroleum logistics be taxed to reduce emissions? International Tax and Public Finance, 29(3), 589–613. https://doi.org/10.1007/s10797-02109684-w [Google Scholar] [Crossref]
30. Rodrigue, J. P. (2020). The Geography of Transport Systems (5th ed.). Routledge. [Google Scholar] [Crossref]
31. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. Renewable and Sustainable Energy Reviews, 117, 109961. https://doi.org/10.1016/j.rser.2019.109961 [Google Scholar] [Crossref]
32. Spigel, B. (2017). The relational organization of entrepreneurial ecosystems. Entrepreneurship Theory and Practice. [Google Scholar] [Crossref]
33. Tachizawa, E. M., Alvarez-Gil, M. J., & Montes-Sancho, M. J. (2015). How green are your suppliers? Using a supplier environmental performance rating system. Industrial Marketing Management. [Google Scholar] [Crossref]
34. Treiblmaier, H. (2019). Combining blockchain technology and the physical internet for logistics. [Google Scholar] [Crossref]
35. International Journal of Production Research, 57(7), 2063–2078. [Google Scholar] [Crossref]
36. UNCTAD. (2022a). Review of Maritime Transport. United Nations Publications. [Google Scholar] [Crossref]
37. UNCTAD. (2022b). World Investment Report. United Nations Publications. [Google Scholar] [Crossref]
38. Yadav, G., Luthra, S., Jakhar, S., Mangla, S., & Rai, D. (2021). Role of digital technologies in sustainability-focused supply chain innovation. Technological Forecasting and Social Change, 168, 120776. [Google Scholar] [Crossref]
39. Zhang, X., Li, H., & Wang, Y. (2022). Logistics resilience and energy supply chain disruptions: A systems approach. Applied Energy, 314, 118958. https://doi.org/10.1016/j.apenergy.2022.118958 [Google Scholar] [Crossref]
40. Zhao, R., Liu, Y., Zhang, N., & Wang, C. (2021). Artificial intelligence applications in green petroleum logistics: A review and future directions. Resources, Conservation & Recycling, 174, 105802. https://doi.org/10.1016/j.resconrec.2021.105802 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact Of UI/UX Design on User Trust and Task Completion in Civic Tech Platforms
- Solar Cell Photovoltaic Model Shell Sp 75
- Development of an Intelligent Traffic Management System to Address Visibility Obstruction at Urban Intersections: A Case Study of Ibadan Metropolis
- Optimum Placement of Facts Devices on an Interconnected Power Systems Using Particle Swarm Optimisation Technique
- Assessing Construction Transformation and Implication on Future Production Flow System