Parthiv Kantilal. Chaudhari – November 2016 – Page No.: 01-05
A microwave assisted synthesis of three new series of of 1, 2, 4-triazolo [1, 5-a] pyrimidines (PK-101 to PK-110) has been synthesized by the mixture of 5-(methylthio)-2H-1,2,4-triazol-3- amine (0.01 mol), 4,4,4-trifluoro-1-(4-methoxyphenyl)butane-1,3- dione (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) in ethanol (5 mL) was irradiated under microwave conditions at 120 °C for 10-15 min. The structures of all the newly synthesized compounds are elucidated by FT-IR, mass spectra, 1H NMR and elemental analysis. The newly synthesized compounds are subjected to various biological activities viz., antimicrobial, antimycobacterial, anticancer and antiviral.
- Page(s): 01-05
- Date of Publication: 30 November 2016
Parthiv Kantilal. Chaudhari
Government Science College, Chemistry Department,
Vankal, Ta:-Mangrol, D:- Surat, Gujrat India.
References
[1]. Leadbeater, N. Chemistry World 2004, 1, 38.
[2]. Fischer, G. Adv. Heterocycl. Chem. 1993, 57, 81.
[3]. Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 77, 345.
[4]. Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 73, 131.
[5]. Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 75, 243.
[6]. Zhang, N.; Semiramis, A. K.; Thai N. et al. J. Med. Chem. 2007, 50, 319.
[7]. Havlicek, L.; Fuksova, K.; Krystof, V. et al. Bioorg. Med. Chem. 2005, 13, 5399.
[8]. Fraley M. E., Hoffman W. F., Rubino R. S. Bioorg. Med. Chem. Lett. 2002, 12, 2767.
[9]. Chen, Q.; Zhu, X. L.; Liu, Z. M. et al. Eur. J. Med. Chem. 2008, 43, 595.
[10]. Uryu, S.; Tokuhiro, S.; Murasugi, T. et al. Brain Research 2002, 946, 298
[11]. Liekfeld, H. Pharmazeut. Ztg. 1994, 139, 34.
[12]. Yamashkin, S. A.; Kucherenko, N. Y.; Yurovskaya, M. A. Chem. Heterocycl. Compd. (Engl. Transl.) 1997, 33, 499.
[13]. Fischer, G. Adv. Heterocycl. Chem. 1993, 57, 81.
[14]. Krasovsky, A. L.; Moiseev, A. M.; Nenajdenko, V. G.; Balenkova, E. S. Synthesis 2002, 901.
[15]. Hammouda, M. H.; Etman, E.; M. Metwally, A. J. Serb. Chem. Soc. 1992, 57, 165.
[16]. Al-Schiekh, M. A.; El-Din, A. M. S.; Hafez, E. A.; Elnagdi, M. H. J. Chem. Res. 2004, 174.
[17]. Kuznetsova, O. A.; Filyakova, V. I.; Pashkevich, K. I.; Ulomskii, E. N.; Plekhanov, P. V.; Rusinov, G. L.; Kodess, M. I.; Rusinov, V. L. Russ. Chem. Bull. (Engl. Transl.) 2003, 52.
[18]. Lipunova, G. N.; Nosova, E. V.; Kodess, M. I.; Charushin, V. N.; Rozin, Y. A.; Chasovskikh, O. M. Russ. J. Org. Chem. (Engl. Transl.) 2001, 37, 570.
[19]. Hassaneen, H. M.; Abdallah, T. A.; Abdelhadi, H. A.; Hassaneen, H. M. E.; Pagni, R. M. Heteroat. Chem. 2003, 14, 491.
[20]. Al-Zaydi, K. M.; Borik, R. M.; Elnagdi, M. H. Molecules 2003, 8, 910.
[21]. Kanno, H.; Yamaguchi, H.; Ichikawa, Y.; Isoda S. Chem. Pharm. Bull. 1991, 39, 1099.
[22]. Zgoda, J. R.; Porter, J. R. Pharm. Biol. 2001, 39, 221.
[23]. Jeon, S. L.; Kim, D. H.; Son, J. B.; Jeong, I. H. Bulletin of the Korean Chemical Society 2006, 27(12), 1961.
Parthiv Kantilal. Chaudhari “Microwave Assisted Synthesis and Biological Evaluation of 1, 2, 4-Triazolo [1, 5-A] Pyrimidines” International Journal of Research and Innovation in Applied Science -IJRIAS vol.1 issue 8, pp.01-05 2016
Keyur S. Hingarajiya, K. D. Patel and G. K. Solanki – November 2016 – Page No.: 06-11
Structural and optical properties of nanocrystalline SnSe thin film confer in this paper. For that purpose Nanocrystalline thin film of SnSe was deposited at room temperature having thickness 1μm, 2μm, 3μm and 4μm. Structural and optical properties studied by XRD, TEM, AFM, and Uv-Vis- Nir spectroscopy methods of all thin films. From these studied we found there is a strong effect of thickness on structural and optical properties of Nanocrystalline SnSe thin film.
- Page(s): 06-11
- Date of Publication: 30 November 2016
- Keyur S. Hingarajiya
R. G. Shah Science College, Vasna, Ahmedabad-382460, Gujarat, India - K. D. Patel
Dept. of Physics, S. P. University, V. V. Nagar-388120, Gujarat,India - G. K. Solanki
Dept. of Physics, S. P. University, V. V. Nagar-388120, Gujarat,India
References
[1]. B. Pejova, I. Grozdanova, (2005). Mat. Chem. Phys. 90, 35.
[2]. V. C. Costa, Y. Shen, K. L. Bray, (2002). J. Non-Cryst. Solids 304, 217.
[3]. S. N. Sarangi, S. N. Sahu, (2004). Physica E 23, 459.
[4]. U. V. Desnica, I. D. Desnica-Frankovic, O. Gamulin, C. W. White, E. Sonder, R. A. Zuhr, (2002). J. Non-Cryst. Solids 299, 1100.
[5]. L. Li, J. Hu, W. Yang, A. P. Alivisatos,(2001). Nano Letters 1, 349.
[6]. L. E. Bruce, (1984). J. Chem. Phys. 80, 4403.
[7]. Z. Zhang, M. Zhao, Q. Jiang, (2001). Semicond. Sci. Technol. 16, L33.
[8]. S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, B. R. Ratna, (1999). Phys. Rev. B 60, 9191.
[9]. C. C. Chen, A. B. Herhold, C. S. Johnson, A. P. Alivisators, (1997). Science 276, 398.
[10]. P. Nemec, D. Mikes, J. Rohovec, E. Uhlirova, F. Trojanek, P. Maly, (2000). Mat. Sci. Eng. B 69, 500.
[11]. J. F. Suyver, R. Bakker, A. Meijerink, J. J. Kelly, (2001). Phys. Stat. Sol. (b) 224, 307.
[12]. D. L. Kelin, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, (1997). Nature 389, 699.
[13]. K. R. Murali, V. Swaminathan, D. C. Trivedi, (2004). Sol. Energy Mat. Sol. Cells 81, 113.
[14]. Z. Nabi, A. Kellou, S. Me´c¸abih, A. Khalfi, N. Benosman, (2003). Mater. Sci. Eng. B 98 104.
[15]. Y. Hua, W. Chen, J.F. Chen, S. Zhang, (2003). Mater. Lett. 57 3137.
[16]. H. Ebe, F. Sakuraia, Z.Q. Chend, A. Uedonod, B.-P. Zhange, Y. Segawae, K. Sutoa, J.-i. Nishizawa, (2002). J. Cryst. Growth 237– 239 1566.
[17]. Y.-l. Yan, Y. Li, X.-f. Qian, J. Yin, Z.-k. Zhu, (2003). Mater. Sci. Eng. B 103 202.
[18]. M. Sotelo-Lerma, R.A. Zingaro, S.J. Castillo, (2001). J. Organomet. Chem 623 81.
[19]. A.P. Belyaev, V.P. Rubets, M.Yu. Nuzhdin, (2003). Semiconductors 37 646.
[20]. W. Zhang, Z. Yang, J. Liu, Y. Qian, W. Yu, Y. Jia, X. Liu, G. Zhou, J. Zhu, (2001). J. Solid State Chem. 161 184.
[21]. S. Schlecht, M. Budde, L. Kienle, (2002). Inorg. Chem. 41 6001.
[22]. Q. Han, Y. Zhu, X. Wang, W. Ding, (2004). J. Mater. Sci. 39 4643.
[23]. Z. Zainal, S. Nagalingam, A. Kassim, M.Z. Hussein, W.M.M. Yunus, (2004). Solar Energy Mater. Solar Cells 81 261.
[24]. K. Zweibel, (2000). Solar Energy Mater. Solar Cells 63 375.
[25]. C. Wang, Y. D. Li, G. H. Zhang, J. Zhuang, G. Q. Shen, (2000). Inorg. Chem. 39, 4237-4239.
[26]. P. Scherrer, (1918). Mathematisch-Physikalische Klasse 2, 98-100.
[27]. J. I. Pankove, (1971). Optical Processes in Semiconductors, Englewood Cliffs. NJ: Prentice-Hall. Efros, A. L. Efros, (1982). Sov. Phys. Semicond. 16, 772.
[28]. W. Wei-Yu, J. N. Schulman, T. Y. Hsu, Feron Uzi, (1987). Appl. Phys. Lett. 51, 710.
Keyur S. Hingarajiya, K. D. Patel and G. K. Solanki “Structural and Optical Characterization of Nanocrystalline SnSe Thin Film” International Journal of Research and Innovation in Applied Science -IJRIAS vol.1 issue 8, pp.06-11 2016