Review of Green Technologies for Environmental Protection: Innovations and Impact
Authors
Department of Botany, Swa. Tukojirao Pawar Shaskiya Vigyan Mahavidyalaya, Dewas (M.P.) (India)
Department of Botany, Govt. College Udaynagar, (M.P.) (India)
Article Information
DOI: 10.51584/IJRIAS.2025.100900049
Subject Category: Environment
Volume/Issue: 10/9 | Page No: 484-491
Publication Timeline
Submitted: 2025-09-26
Accepted: 2025-10-02
Published: 2025-10-15
Abstract
This review paper aims to explore the diverse applications and impacts of green technology on environmental protection. Green technologies, encompassing renewable energy, waste management, water conservation, and sustainable agriculture, signify crucial advancements in minimizing ecological footprints and mitigating climate change impacts. The key findings highlight significant progress in solar and wind energy efficiency, innovative waste recycling methods, and sustainable water management practices. However, challenges such as high initial costs, technological limitations, and uneven global adoption remain prevalent. The paper underscores the importance of these technologies not only for environmental benefits but also for economic and social gains. It suggests that future research should focus on enhancing affordability, scalability, and integrative policy frameworks to accelerate the transition towards a sustainable future. Developing novel technologies and improving existing ones could further bolster our efforts in ensuring environmental sustainability and resilience.
Keywords
Green technology, Renewable Energy, Waste Management, Water Management, Sustainable Agriculture
Downloads
References
1. Alawad, S. M., Mansour, R. B., Al-Sulaiman, F. A., & Rehman, S. (2023). Renewable energy systems for water desalination applications: A comprehensive review. Energy Conversion and Management, 286, 117035. [Google Scholar] [Crossref]
2. Ayodele, T. R., & Ogunjuyigbe, A. S. O. (2015). Mitigation of wind power intermittency: Storage technology approach. Renewable and Sustainable Energy Reviews, 44, 447-456. [Google Scholar] [Crossref]
3. Ayodele, T. R., & Ogunjuyigbe, A. S. O. (2015). Mitigation of wind power intermittency: Storage technology approach. Renewable and Sustainable Energy Reviews, 44, 447-456. [Google Scholar] [Crossref]
4. Behera, D. K. (2023). Promoting Sustainable Development Through Environmental Policy, Green Technologies, and Effective Waste Management: A Comprehensive Review. Journal of Multidisciplinary Science: MIKAILALSYS, 1(2), 179-198. [Google Scholar] [Crossref]
5. Bhuiyan, E. A., Hossain, M. Z., Muyeen, S. M., Fahim, S. R., Sarker, S. K., & Das, S. K. (2021). Towards next generation virtual power plant: Technology review and frameworks. Renewable and Sustainable Energy Reviews, 150, 111358. [Google Scholar] [Crossref]
6. Chakrabortty, S., Si, S., Mohapatra, J., & Karak, P. (2024). Bio-Fertilizer Synthesis from Marine Biomass: An Eco-Friendly Approach to Sustainable Agriculture. In Multidisciplinary Applications of Marine Resources: A Step towards Green and Sustainable Future (pp. 1-16). Singapore: Springer Nature Singapore. [Google Scholar] [Crossref]
7. Clairotte, M. (2014). Impact of fuels and exhaust aftertreatment systems on the unregulated emissions from mopeds, light and heavy-duty vehicles. Université de Montpellier, 2. [Google Scholar] [Crossref]
8. Dokl, M., Van Fan, Y., Vujanović, A., Pintarič, Z. N., Aviso, K. B., Tan, R. R., ... & Čuček, L. (2024). A waste separation system based on sensor technology and deep learning: A simple approach applied to a case study of plastic packaging waste. Journal of Cleaner Production, 450, 141762. [Google Scholar] [Crossref]
9. Dowie, M. (1995). Losing ground: American environmentalism at the close of the twentieth century. mit Press. [Google Scholar] [Crossref]
10. Edwards, E. C., Holcombe, A., Brown, S., Ransley, E., Hann, M., & Greaves, D. (2023). Evolution of floating offshore wind platforms: A review of at-sea devices. Renewable and Sustainable Energy Reviews, 183, 113416. [Google Scholar] [Crossref]
11. Ghazi, Z. M., Rizvi, S. W. F., Shahid, W. M., Abdulhameed, A. M., Saleem, H., & Zaidi, S. J. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination, 542, 116063. [Google Scholar] [Crossref]
12. Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical reviews in plant sciences, 30(1-2), 95-124. [Google Scholar] [Crossref]
13. Guerrero-Lemus, R. V. T. K. A. K. L. S. R., Vega, R., Kim, T., Kimm, A., & Shephard, L. E. (2016). Bifacial solar photovoltaics–A technology review. Renewable and sustainable energy reviews, 60, 1533-1549. [Google Scholar] [Crossref]
14. Islam, H. (2025). Nexus of economic, social, and environmental factors on sustainable development goals: The moderating role of technological advancement and green innovation. Innovation and Green Development, 4(1), 100183. [Google Scholar] [Crossref]
15. Islam, M. M., Yu, T., Giannoccaro, G., Mi, Y., La Scala, M., Rajabi, M. N., & Wang, J. (2024). Improving reliability and stability of the power systems: A comprehensive review on the role of energy storage systems to enhance flexibility. IEEE Access. [Google Scholar] [Crossref]
16. Jacobson, M. Z., & Delucchi, M. A. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy policy, 39(3), 1154-1169. [Google Scholar] [Crossref]
17. Kolstad, C. D., & Krautkraemer, J. A. (1993). Natural resource use and the environment. In Handbook of natural resource and energy economics (Vol. 3, pp. 1219-1265). Elsevier. [Google Scholar] [Crossref]
18. Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., ... & Afjeh, A. (2016). Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 53, 209-224. [Google Scholar] [Crossref]
19. Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews, 142, 110833. [Google Scholar] [Crossref]
20. Liu, Q., Martinez-Villarreal, S., Wang, S., Tien, N. N. T., Kammoun, M., De Roover, Q., ... & Richel, A. (2024). The role of plastic chemical recycling processes in a circular economy context. Chemical Engineering Journal, 155227. [Google Scholar] [Crossref]
21. Lorek, S., & Spangenberg, J. H. (2014). Sustainable consumption within a sustainable economy–beyond green growth and green economies. Journal of cleaner production, 63, 33-44. [Google Scholar] [Crossref]
22. Machín, A., & Márquez, F. (2024). Advancements in photovoltaic cell materials: Silicon, Organic, and Perovskite Solar cells. Materials, 17(5), 1165. [Google Scholar] [Crossref]
23. Majumdar, P., Mitra, S., & Bhattacharya, D. (2021). IoT for promoting agriculture 4.0: a review from the perspective of weather monitoring, yield prediction, security of WSN protocols, and hardware cost analysis. Journal of Biosystems Engineering, 46(4), 440-461. [Google Scholar] [Crossref]
24. Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519-5558. [Google Scholar] [Crossref]
25. Mishra, A., Kumar, M., Medhi, K., & Thakur, I. S. (2020). Biomass energy with carbon capture and storage (BECCS). In Current developments in biotechnology and bioengineering (pp. 399-427). Elsevier. [Google Scholar] [Crossref]
26. Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254. [Google Scholar] [Crossref]
27. Mukherjee, C., Varghese, D., Krishna, J. S., Boominathan, T., Rakeshkumar, R., Dineshkumar, S., ... & Sivaramakrishna, A. (2023). Recent advances in biodegradable polymers–properties, applications and future prospects. European Polymer Journal, 192, 112068. [Google Scholar] [Crossref]
28. Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113(39), 10759-10768. [Google Scholar] [Crossref]
29. Owen, D. A. L. (2018). Smart water technologies and techniques: Data capture and analysis for sustainable water management. John Wiley & Sons. [Google Scholar] [Crossref]
30. Sahajwalla, V. (2018). Green processes: Transforming waste into valuable resources. Engineering, 4(3), 309-310. [Google Scholar] [Crossref]
31. Thennakoon, T. M. T. N., Hewage, H. T. M., Sandunika, D. M. I., Panagoda, L. P. S. S., Senarathna, W. G. C. M., Sulaksha, L., ... & Perera, M. D. V. (2023). Harnessing the power of ocean energy: A comprehensive review of power generation technologies and future perspectives. Journal of Research Technology and Engineering, 4, 73-102. [Google Scholar] [Crossref]
32. Turkenburg, W. C., & Faaij, A. (2000). Renewable energy technologies (pp. 219-72). UNDP/UNDESA/WEC: Energy and the Challenge of Sustainability. World Energy Assessment. New York: UNDP, 219-272. [Google Scholar] [Crossref]
33. Weis, T. (2013). The ecological hoofprint: The global burden of industrial livestock. Bloomsbury Publishing. [Google Scholar] [Crossref]
34. Yağ, İ., & Altan, A. (2022). Artificial intelligence-based robust hybrid algorithm design and implementation for real-time detection of plant diseases in agricultural environments. Biology, 11(12), 1732. [Google Scholar] [Crossref]
35. Yeatts, D. E., Auden, D., Cooksey, C., & Chen, C. F. (2017). A systematic review of strategies for overcoming the barriers to energy-efficient technologies in buildings. Energy research & social science, 32, 76-85. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Methane Emissions from Municipal Solid Waste - Case Study in Cai Rang District, Can Tho City, Vietnam
- Youth Activism, Intentional Integration of Policies to Raise Awareness on Climate Change Action among the Youth
- Breathing Spaces: Environmental & User Experience in Dhanmondi and Zigatola Multistoried Apartments, Dhaka, Bangladesh
- Effects of Solid Waste Disposal on Soil Quality in Makurdi Metropolis, Benue State, Nigeria
- Environmental Impact of Artisanal and Small-Scale Gold Mining in Borgu Local Government Area