Design of Uniform Spray Nozzle and Simulation of Carrier Gas Flow Rate Distribution for FTO Thin Film Fabrication Process
Authors
Faculty of Electronics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea (Korea)
Faculty of Electronics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea (Korea)
Faculty of Electronics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea (Korea)
Faculty of Electronics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea (Korea)
Faculty of Electronics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea (Korea)
Article Information
DOI: 10.51584/IJRIAS.2025.100900096
Subject Category: Education
Volume/Issue: 10/9 | Page No: 978-987
Publication Timeline
Submitted: 2025-08-16
Accepted: 2025-08-23
Published: 2025-10-25
Abstract
The FTO thin films were deposited on 15 cm × 15 cm glass substrates by ultrasonic spray pyrolysis and the influence of process parameters on the film properties was investigated. This paper is the first report on the design of a uniform nozzle and simulating the carrier gas flow characteristics in an ultrasonic spray pyrolysis process. The uniformity of FTO films was evaluated by surface resistivity. The structure, surface morphology and optical properties of FTO films were investigated using scanning electron microscopy, X-ray diffraction, and UV-Vis spectroscopy. The process conditions for film preparation were SnCl4 concentration of 1.34 mol, NH4F concentration of 0.08 mol, temperature of 500 °C, deposition time of 15 min, carrier gas flow rate of 3 m/s, distance between nozzle and substrate of 0.7 cm. The transmittance of the fabricated FTO films was 80%, the surface resistance showed a uniform behavior at 14-15Ω/㎠and the X-ray analysis showed a high orientation of SnO2 crystals in the 200-plane. SEM analysis showed that the crystallite size was constant.
Keywords
Nozzle; Design; FTO film; Simulation; Ultrasonic spray pyrolysis
Downloads
References
1. S. Calnan, A.N. Tiwari. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 518 (2010), 1839. [Google Scholar] [Crossref]
2. G. Granqvist, Transparent conductors as solar energy materials: a panoramic review, Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007). [Google Scholar] [Crossref]
3. S. Aukkaravittayapun , N. Wongtida , T. Kasecwatin, Large scale F-doped SnO2 coating on glass by spray pyrolysis, National Metal and Materials Technology Center, 1-4(2005) [Google Scholar] [Crossref]
4. C.R. Osterwald, T.J. McMahon, J.A. del Cueto, Electrochemical corrosion of SnO2: F transparent conducting layers in thin film photovoltaic modules, Sol. Energy Mater. Sol. Cells 79 (2003) 21–33. [Google Scholar] [Crossref]
5. S. Sujatha Lekshmy, G.P. Daniel, K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications, Appl. Surf. Sci. 274 (2013) 95–100. [Google Scholar] [Crossref]
6. Ch.M. Wang, Ch.C. Huang, J.Ch. Kuo, J.L. Huang, Investigation of pulsed ultraviolet laser annealing of Sb/SnO2 thin films on the structural, optical and electrical properties, Surf. Coat. Technol. 231 (2013) 374–379. [Google Scholar] [Crossref]
7. B Benhaoua, S Abbas, A Rahal, A Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications. Superlattices and Microstructures 83 (2015) 78–88 [Google Scholar] [Crossref]
8. H. Köse, A.O. Aydin, H. Akbulut, Sol–gel synthesis of nanostructured SnO2 thin film anodes for Li-ion batteries, Acta Phys. Pol. A 121 (2012) 227–229. [Google Scholar] [Crossref]
9. R.H.R. Castro, J. Pereira Gilberto, Douglas Gouvea, Surface Modification of SnO2 Nanoparticles Containing Mg or Fe: Effects on Sintering, Appl. Surf. Sci. 253 (2007) 4581. [Google Scholar] [Crossref]
10. G. Korotcenkov, I. Boris, V. Brinzari, S.H. Han, B.K. Cho, The role of doping effect on the response of SnO2-based thin film gas sensors: analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis, Sens Actuat B 182 (2013) 112–124. [Google Scholar] [Crossref]
11. E. Zampiceni, E. Bontempi, G. Sberveglieri, L.E. Depero, Mo influence on SnO2 thin films properties, Thin Solid Films 418 (2002) 16–20 [Google Scholar] [Crossref]
12. G. Turgut, Investigation of characteristic properties of Pr-doped SnO2 thin films, Philosophical Magazine, 95 (2015) 1607–1625. [Google Scholar] [Crossref]
13. G. Turgut, E.F. Keskenler, S. Aydın, E. Sönmez, S. Dogan, B. Düzgün, M. Ertugrul, Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films, Superlattices Microstruct. 56 (2013) 107–116. [Google Scholar] [Crossref]
14. R. Thomas, T. Mathavan, Mohd. Shkir, Opto-electronic properties of Ce-doped FTO thin films prepared using Nebulizer spray technique for TCO application Optik (2020) 1-31 [Google Scholar] [Crossref]
15. F Gao, G Qin, Y Li, Q Jiang, Li Luo, K Zhao, Y Liu, One-pot synthesis of La doped SnO2 layered nanoarrays with enhanced gas-sensing performance toward acetone, RSC Advances, DOI: 10.1039/C5RA27270J. [Google Scholar] [Crossref]
16. B.H. Liao, C.C. Kuo, P.J. Chen, and C.C. Lee, Fluorine doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target, Appl. Opt. 50, C106–C110 (2011). [Google Scholar] [Crossref]
17. B H Liao, S H Chan, C C Lee, FTO films deposited in transition and oxide modes by magnetron sputtering using tin metal target Appl. Opt. 53(4), (2011), A148–A153 [Google Scholar] [Crossref]
18. H. Köse, A.O. Aydin, H. Akbulut, Sol–gel synthesis of nanostructured SnO2 thin film anodes for Li-ion batteries, Acta Phys. Pol. A 121 (2012) 227–229., [Google Scholar] [Crossref]
19. B. Zhu, Ch. Yin, Z. Zhang, Ch. Tao, Liu Yang, Investigation of the hydrogen response characteristics for sol–gel-derived Pddoped, Fe-doped and PEG-added SnO2 nano-thin films, Sens Actuat B 178 (2013) 418–425. [Google Scholar] [Crossref]
20. K. Murakami, K. Nakajima, S. Kaneko, Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique, Thin Solid Films 515 (2007) 8632–8636., [Google Scholar] [Crossref]
21. S.M. Sabnis, A. Prakash, Bhadane, P.G. Kulkarni, Process flow of spray pyrolysis technique, IOSR Journal of Applied Physics 4, (2013), 2278-4861. [Google Scholar] [Crossref]
22. A Kashinath Bogle, D. Kiran More, Sumayya Begum, W. Jagdish Dadge, P. Megha Mahabole, S. Rajendra Khairnar, Optical and electrical properties of F doped SnO2 thin films, Indian Journal of Pure & Applied Physics 56 (2018) 755-758. [Google Scholar] [Crossref]
23. A. Adjimi, M.S Aida, N Attaf, Y.S Ocak, Gadolinium doping effect on SnO2 thin films optical and electrical properties, Mater. Res. Express 6 (2019) 096405 [Google Scholar] [Crossref]
24. Y. Ziad Banyamin, J. Peter Kelly, Glen West, Jeffery Boardman, Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering, Coatings 4 (2014) 732-746. [Google Scholar] [Crossref]
25. A.A. Yadav, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C.H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: Effect of the substrate temperature, Journal of Alloys and Compounds 488 (2009) 350–355. [Google Scholar] [Crossref]
26. K. Deva Arun Kumar, S. Valanarasu, K. Jeyadheepan, Hyun‑Seok Kim, Dhanasekaran Vikraman, Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics, Journal of Materials Science: Materials in Electronics 29 (2018) 3648–3656. [Google Scholar] [Crossref]
27. E. Elangovan, M.P. Singh, K. Ramamurthi, Studies on structural and electrical properties of spray deposited SnO2: F thin films as a function of film thickness, Materials Science and Engineering B 113 (2004) 143–148. [Google Scholar] [Crossref]
28. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, J.H. Kim, Appl. Surf. Sci. 255 (2009) 9358–9364. [Google Scholar] [Crossref]
29. Q.N. Zhao, S. Wu, D.K. Miao, Adv. Mater. Res. 150–151 (2011) 1043–1048. [Google Scholar] [Crossref]
30. E.V.A. Premalal, N. Dematage, S. Kanko, A. Konno, Electrochemical 80 (2012) 624–628. [Google Scholar] [Crossref]
31. D.S. Bhachu, M.R. Waugh, K. Zeissler, W.R. Branford, I.P. Parkin, Chem. Eur. J. 17 (2011) 11613–11621. [Google Scholar] [Crossref]
32. H.L. Zhao, Q.L. Liu, Y.X. Cai, F.C. Zhang, Mater. Lett. 62 (2008) 1294–1296. [Google Scholar] [Crossref]
33. J.K. Yang, W.C. Liu, L.Z. Dong, Y.X. Li, C. Li, H.L. Zhao, Appl. Surf. Sci. 257 (2011) 10499–10502. [Google Scholar] [Crossref]
34. A. Graaf, J.V. Deelen, P. Poodt, T. Mol, K. Spee, F. Grob, A. Kuypers, Energy Procedia 2 (2010) 41–48. [Google Scholar] [Crossref]
35. H. Kim, R.C.Y. Auyeung, A. Piqué, Thin Solid Films 520 (2011) 497–500 [Google Scholar] [Crossref]
36. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic, Superlattices Microstruct. 70 (2014) 61–69. [Google Scholar] [Crossref]
37. A. Rahal, S. Benramache, B. Benhaoua, Preparation of n-type semiconductor SnO2 thin films, J. Semiconduct. 34 (8) (2013) 1–4. [Google Scholar] [Crossref]
38. Z.B. Zhou et al; Preparation of indium tin oxidefilms and doped tin oxide films by an ultrasonic spray CVD process, Applied Surface Science, 172, (2001), 245-252. [Google Scholar] [Crossref]
39. B Suer, M Ozenbas, Conducting fluorine doped tin dioxide(FTO) coatings by ultrasonic spraysis for heating applications, Ceramics International, vol47, (2021), 17242-17254 [Google Scholar] [Crossref]
40. Sahrul Saehana, Aqidatul Izzah, et al, Fabrication of Fluorine-Doped Tin Oxide (FTO): From experiment to its applicaton in physics learning, 7(2), (2023), 259-268 [Google Scholar] [Crossref]
41. N Guermat,.er al, Super-Hydrophobic F-Doped SnO2 (FTO) Nanoflowers Deposited by Spray Pyrolysis Process for Solar Cell Applications. Journal of Nano- and Electronic Physics, 14(5), (2022), 05013-1–05013-6. [Google Scholar] [Crossref]
42. R R-Amador, J J Alvarado-Pulido, Study of fluorine-doped tin oxide thin films deposited by pneumatic spray pyrolysis and ultrasonic spray pyrolysis: a direct comparison, Mater. Res. Express, 10, (2023), 066402 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Assessment of the Role of Artificial Intelligence in Repositioning TVET for Economic Development in Nigeria
- Teachers’ Use of Assure Model Instructional Design on Learners’ Problem Solving Efficacy in Secondary Schools in Bungoma County, Kenya
- “E-Booksan Ang Kaalaman”: Development, Validation, and Utilization of Electronic Book in Academic Performance of Grade 9 Students in Social Studies
- Analyzing EFL University Students’ Academic Speaking Skills Through Self-Recorded Video Presentation
- Major Findings of The Study on Total Quality Management in Teachers’ Education Institutions (TEIs) In Assam – An Evaluative Study