Physicochemical Properties of Moringa Oleifera Seeds: Promising Potential for Applications Across Nutrition and Health Sector.

Authors

Oyewusi, P.A

Department of Science Laboratory Technology, The Federal Polytechnic, Ado-Ekiti (Nigeria)

Apata, D.A

Department of Science Laboratory Technology, The Federal Polytechnic, Ado-Ekiti (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000012

Subject Category: Chemistry

Volume/Issue: 10/10 | Page No: 172-180

Publication Timeline

Submitted: 2025-09-01

Accepted: 2025-09-07

Published: 2025-10-28

Abstract

The physicochemical attributes of defatted Moringa oleifera seeds renowned for their versatile health applications have been the focal point of substantial research. This study extensively investigated the nutritional profile of Moringa oleifera seeds to further inform their medicinal use. The defatted seed meal of Moringa oleifera was subjected to proximate, mineral, vitamin and amino acids analyses with the fatty acid composition. The results of the proximate composition show moisture content (9.81 %), ash (3.79 %), crude fibre (4.95 %), protein (23.97 %), crude fat (5.88 %) and carbohydrate (51.60 %). Mineral composition shows that the seed is rich in potassium, phosphorus, calcium and sodium with 271 mg/100g, 180 mg/100g, 118 mg/100g and 62 mg/100g respectively. The seed has vitamins A and C with 38.12 mg/100g and 45..42 mg/100g respectively. The seed also contains both essential and non-essential amino acids which are present in appreciable concentrations in the defatted seed meal. The seed oil which was extracted with n-hexane gave 34.38 %. The extracted oil revealed iodine value of 61.32 gI2/100g, saponification value, 231 mgKOH/g and acid value of 1.15 mg/g. The oil also contains high levels of unsaturated fatty acids with oleic acids (monounsaturated) having up to 75.7 % but linolenic (polyunsaturated) with 2.12 % while the saturated fatty acids gave a total of 16.39 %. These reveal medicinal composition and emphasizing the promising potentials for application across nutrition and health sectors. This contributes to the expanding body of knowledge concerning the versatility of this medicinal plant to help in times of health challenge.

Keywords

Moringa oleifera; physicochemical properties; nutrition; healthcare, fatty acids and amino acids.

Downloads

References

1. Adeyeye, E.I, Olaleye A.A., Idowu, O.T., Adubiaro, H.O., and Ayeni, K.E (2022). Comparative amino acid composition and quality parameters of Moringa oleifera testa and cotyledon. Mal. J. Nutr. Vol 28(2): pp 227-238. [Google Scholar] [Crossref]

2. Adeyeye, E.I and Olaleye, A.A (2012). Amino acid composition of bambara groundnut seeds: Dietary implications, Int. J. Chem.Sci. Vol 5: pp 152-156. [Google Scholar] [Crossref]

3. O.A.C (1990). Official method of analysis of the A.O.A.C (W. Horwitz Editor) 18th edition Washington D.C, A.O.A.C. [Google Scholar] [Crossref]

4. Anhwange, B.A., Ajibola, V.O. and Oniye, S.J (2004): Chemical studies of the seeds of Moringa oleifera and Detarium microcarpum. J. Biol. Sci., 4: pp711-715. [Google Scholar] [Crossref]

5. Anwar, F. and Rashid, U. (2007): Physicochemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot., 39 (5): pp 1443-1453. [Google Scholar] [Crossref]

6. Anwar, F, Latif, S., Ashraf, M., and Gilani A.H. (2007): Moringa oleifera: a food plant with multiple bio-chemical and medicinal uses- a review. Phytother. Res., 21: pp 17-25. [Google Scholar] [Crossref]

7. Arishima, T; Tachibana, N. Kojima, M; Takamatsu, K; Imaizumi, K. (2009): Screening of resistant triglycerols to the pancreatic lipase and their potentialities as a digestive retardant. J. Food Lipids 2009, 16, pp 72-88. [Google Scholar] [Crossref]

8. Bernal, A., Zafra, M. A., Simón, M. J., and Mahía, J. (2023). Sodium homeostasis, a balance necessary for life. Nutrients, 15(2), 395. [Google Scholar] [Crossref]

9. Boopathi, N. M., and Abubakar, B. Y. (2021). Botanical Descriptions of Moringa spp. The Moringa Genome, 11-20. [Google Scholar] [Crossref]

10. Cervera-Chiner, L; Pageo, S; Juan-Borras, M; Garcia-Mares, F.J; Castello, M.L ; Ortola, M.D. (2024): Fatty acid profile and physicochemical properties of KMoringa oleifera seed oil extracted at different temperatures. Foods 2024, 13, 2733 pp 1-14. [Google Scholar] [Crossref]

11. Chiș, A., Noubissi, P. A., Pop, O. L., Mureșan, C. I., Fokam Tagne, M. A., Kamgang, R., ... and Suharoschi, R. (2023). Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. Plants, 13(1), 20. [Google Scholar] [Crossref]

12. Fenn, W. O. (1940). The role of potassium in physiological processes. Physiological Reviews, 20(3), 377-415. [Google Scholar] [Crossref]

13. Fuglie, L.J (2005). The Moringa tree: a local solution to malnutrition. Church World service in Senegal. Pp 20-29. [Google Scholar] [Crossref]

14. Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., and Kate, E. C. (2020). Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. International Journal of Food Sciences, 3(1), 1-32. [Google Scholar] [Crossref]

15. International Olive Council (2017): Determination of fatty acids methyl esters by gas chromatography. International Olive Council. Madrid Spain. [Google Scholar] [Crossref]

16. Islam, M. R., Akash, S., Jony, M. H., Alam, M. N., Nowrin, F. T., Rahman, M. M., ... and Thiruvengadam, M. (2023). Exploring the potential function of trace elements in human health: a therapeutic perspective. Molecular and Cellular Biochemistry, 478(10), 2141-2171. [Google Scholar] [Crossref]

17. Jiang, C., Cifu, A. S., and Sam, S. (2022). Obesity and weight management for prevention and treatment of type 2 diabetes. JAMA, 328(4), 389-390. [Google Scholar] [Crossref]

18. Ma, Z. F., Ahmad, J., Zhang, H., Khan, I., and Muhammad, S. (2020). Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. South African Journal of Botany, 129, 40-46. [Google Scholar] [Crossref]

19. Madrigales-Reátiga, L. F., Gutiérrez-Dorado, R., Perales-Sánchez, J. X. K., and Reyes-Moreno, C. (2021). The Moringa Genus: Botanical and Agricultural Research. In Biological and Pharmacological Properties of the Genus Moringa (pp. 1-20). CRC Press. [Google Scholar] [Crossref]

20. Maryam, M., and Manzoor, A. (2023). Exploring the commercial versatility of Moringa Oleifera: A valuable resource for diverse industries. Intl J Bot Hor Res, 1(1), 01-09. [Google Scholar] [Crossref]

21. Mehwish, H. M., Riaz Rajoka, M. S., Xiong, Y., Zheng, K., Xiao, H., Anjin, T., ... and He, Z. (2022). Moringa oleifera–a functional food and its potential immunomodulatory effects. Food Reviews International, 38(7), 1533-1552. [Google Scholar] [Crossref]

22. Moreira, D.K.T.; Santos, P.S.; Gambero, A.; Macedo, G.A. (2017): Evaluation of structured lipids in the prevention of obesity. Food Residue Int. 2017, 95, pp 52-58. [Google Scholar] [Crossref]

23. Murkey, S. P., Agarwal, A., Pandit, P., Kumar, S., Jaiswal, A., Murkey IV, S. P., and Agarwal IV, A. (2023). Unveiling the Spectrum of Ophthalmic Manifestations in Nutritional Deficiencies: A Comprehensive Review. Cureus, 15(12). [Google Scholar] [Crossref]

24. Olagbemi, P.T and Alikwe, P.C.N. (2014). Proximate composition and chemical composition of raw and defatted Moringa oleifera kernel. Advances in Life Science and Technology. Vol 24: pp 92-99. [Google Scholar] [Crossref]

25. Oomah, B.D; Ladet, S; Godfrey, D.V; Liang, J; Girard, B (2000): Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 16, pp187-193. [Google Scholar] [Crossref]

26. Patil, S. V., Mohite, B. V., Marathe, K. R., Salunkhe, N. S., Marathe, V., and Patil, V. S. (2022). Moringa tree, gift of nature: a review on nutritional and industrial potential. Current Pharmacology Reports, 8(4), 262-280. [Google Scholar] [Crossref]

27. Pehlivan, F. E. (2017). Vitamin C: An antioxidant agent. Vitamin C, 2, 23-35. [Google Scholar] [Crossref]

28. Pravst, I. (2014): Oleic Acid: Production, uses and potential health effects; Lynett, W. Ed., Nova Science Publisher, Inc.: New York. NY, USA, 2014. [Google Scholar] [Crossref]

29. Shao, T., Verma, H. K., Pande, B., Costanzo, V., Ye, W., Cai, Y., and Bhaskar, L. V. K. S. (2021). Physical activity and nutritional influence on immune function: an important strategy to improve immunity and health status. Frontiers in physiology, 12, 751374. [Google Scholar] [Crossref]

30. Sodamade, A., Owonikoko, A., and Owoyemi, D. (2017). Nutrient contents and mineral composition of Moringa oleifera Seed. International Journal of Communication Systems, 5(2), 205-207. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles