Tithonia diversifolia (Hemsl.) A. Gray Essential Oil: A Potential Biopesticide for Management of Sitophilus zeamais (Maize Weevils)

Authors

Emmanuel Amukohe Shikanga

Department of Chemistry, Maseno University, Private Bag Maseno (Kenya)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000061

Subject Category: Chemistry

Volume/Issue: 10/10 | Page No: 775-783

Publication Timeline

Submitted: 2025-09-22

Accepted: 2025-09-28

Published: 2025-11-05

Abstract

This study evaluated the pesticidal activities of essential oils (EO) from the leaves of T. diversifolia against Sitophilus zeamais using fumigation, repellency and contact toxicity assays. Forty-five compounds were identified in the EO constituting 96.7% of the oil from GC/MS analysis. The main constituents included α-pinene (42.2%), β-pinene (16.2%) and β-caryophyllene (12.2%). The oil displayed strong activities against adult insects as expressed by fumigant activity with LC50 value 10.2 mg of oil/L of air (p<0.05), a contact toxicity mortality with LD50 value of 12.3 μg/adult insect and class III repellency achieved within 30 min at a very low conc (30 ul/cm2 paper discs). The high potency of the oils could be attributed to the major components (α-pinene, β-pinene and β-caryophyllene), making it a potential biopesticide for protection of maize grains from Sitophilus zeamais.

Keywords

Tithonia diversifolia, essential oils, Sitophilus zeamais

Downloads

References

1. Tavares, W.S., Costa, M.A., Cruz, I., Silveira, R.D., Serrão, J.E., & Zanuncio, J.C. (2010). Selective effects of natural and synthetic insecticides on mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its predator Eriopis connexa (Coleoptera: Coccinellidae). Journal of Environmental Science and Health Part B-Pesticide Contamination and Agricultural Wastes, 45(6):557-561. [Google Scholar] [Crossref]

2. Facknath, S., & Lalljee, B. (2000). Allelopathic strategies for eco-friendly crop protection. In: Narwal, S.S., Hoagland, R.E., Dilday, R.H. and Reigosa, M.J., Eds., Allelopathy in Ecological Agriculture and Forestry. Kluwer Academic Publishers, London, 33-46, 267 pg. http://dx.doi.org/10.1007/978-94-011-4173-4_3. [Google Scholar] [Crossref]

3. Asawalam, E.F., & Emosairue, S.O. (2006). Comparative Efficacy of Piper guineense (Schum and Thonn) and pirimiphos methyl on Sitophilus zeamais (Motsch.). Tropical and Subtropical Agroecosystems, 6:143-148. [Google Scholar] [Crossref]

4. Hassanali, A., & Lwande, W. (1989). Antipest secondary metabolites from African plants. In: Arnason, L.T., Philogene, B.J.R. and Morand, P., Eds., Insecticides of Plant Origin, ACS Symposium Series 387. American Chemical Society, Washington DC, 78-94. [Google Scholar] [Crossref]

5. Nwosu, L.C., & Nwosu, U.I. (2012). Assessment of maize cob powder for the control of weevils in stored maize grain in Nigeria. Journal of Entomological Research, 36:21-24. [Google Scholar] [Crossref]

6. Ogungbite, O.C., & Oyeniyi, E. (2014). Newbouldia laevis (Seem) as an entomocide against Sitophilus oryzae and Sitophilus zeamais infesting maize grain. Jordan Journal of Biological Science. 7:49 – 55. [Google Scholar] [Crossref]

7. Kerebba, N., Oyedeji, A.O., Byamukama, R., Kuria, S.K., & Oyedeji, O.O. (2019). Pesticidal activity of Tithonia diversifolia (Hemsl.) A. Gray and Tephrosia vogelii (Hook f.); phytochemical isolation and characterization: A review. South African Journal of Botany, 121:366–376. [Google Scholar] [Crossref]

8. Kandungu, J., Anjarwalla, P., Mwaura, L., Ofori, D.A., Jamnadass, R., Stevenson, P.C., & Smith, P. (2015). Pesticidal Plant Leaflet. World Agroforestry Center: Species Database ISBN 978-92-9059-347-8. [Google Scholar] [Crossref]

9. Chukwuka, K.S., Ogunyemi, S., & Fawole, I. (2007). Ecological distribution of Tithonia diversifolia (Hemsl). A. Gray- A new exotic weed in Nigeria. Journal of Biological Sciences 7(5):709-719. DOI: 10.3923/jbs.2007.7d09.719. [Google Scholar] [Crossref]

10. Blake, S.F. (1921). Revision of the genus Tithonia. US National Herbarium, 20:428-436. [Google Scholar] [Crossref]

11. Chukwuka, K.S., & Ojo O.M. (2014). Extraction and characterization of essential oils from Tithonia diversifolia (Hemsl.) A. Gray. American Journal of Essential Oils and Natural Products, 1(4):1-5. [Google Scholar] [Crossref]

12. Mwine, J., Van Damme, P., Kamoga, G., Nasuuna, M., & Jumba, F. (2011). Ethnobotanical survey of pesticidal plants used in South Uganda: case study of Masaka district. Journal of Medicinal Plants Research, 5:1155–1163. [Google Scholar] [Crossref]

13. Wanzala, W., Osundwa, E.M., Alwala, O.J., & Gakuubi, M.M. (2016). Chemical composition of essential oil of Tithonia diversifolia from southern slopes of Mount Elgon in western Kenya. Indian Journal of Ethnophytopharmaceuticals, 2(2):72-83. [Google Scholar] [Crossref]

14. Ajao, A.M., Ojo, J.A., Adeoye, A.A., Ibraheem, M.O., & Babarinde, T.M. (2021). Efficacy of extracts of Tithonia diversifolia (Hemsl.) A. Gray as protectant against maize weevil (Sitophilus zeamais [Motsch.]) and cowpea weevil, Callosobruchus maculatus F. on stored grains. Nigerian Journal of Entomology, 37:115-132. [Google Scholar] [Crossref]

15. Adoyo, F., Mukalama, J.B., & Enyola, M. (1997). Using Tithonia concoction for termite control in Busia District, Kenya. ILEIA Newsletter, 13:24–25. [Google Scholar] [Crossref]

16. Anjarwalla, P., Belmain, S., Sola, P., Jamnadass, R., & Stevenson, P.C. (2016). Handbook on Pesticidal Plants. World Agroforestry Centre (ICRAF), Nairobi, Kenya. [Google Scholar] [Crossref]

17. Moronkola, D.O., Ogunwande, I.A., Walker, T.M., Setzer, W.N., & Oyewole, I.O. (2007). Identification of the main volatile compounds in the leaf and flower of Tithonia diversifolia (Hemsl.) A. Gray. Journal of Natural Medicines, 61:63–66. [Google Scholar] [Crossref]

18. Florence, A.B., Léon, W.E., & Félix, T.Z. (2015). Chemical variability of Tithonia diversifolia (hemsl.) A. Gray leaf and stem oil from Côte D’ivoire. International Journal of Pharmaceutical Sciences and Research, 6(5):2214-2222. DOI: 10.13040/IJPSR.0975-8232.6(5).2214-22. [Google Scholar] [Crossref]

19. Liu, Z.L., & Ho, S.H. (1999). Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J. Stored Prod. Res., 35:317–328. [Google Scholar] [Crossref]

20. Chu, S.S., Du, S.S., Liu, Q.Z., Liu, Q.R., & Liu, Z.L (2012). Composition and insecticidal activity of the essential oil of Artemisia igniaria Maxim. flowering aerial parts against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Medicinal Plants Research, 6(16):3188-3192. DOI: 10.5897/JMPR11.1689 ISSN 1996-0875. [Google Scholar] [Crossref]

21. Liu, Z.L., Liu, Q.R., Chu, S.S. & Jiang, G.H. (2010a). Insecticidal activity and chemical composition of the essential oils of Artemisia lavandulaefolia and Artemisia sieversiana from China. Chemistry & Biodiversity, 7:2040–2045. [Google Scholar] [Crossref]

22. Chu, S.S., Liu, S.L., Jiang, G.H., & Liu, L.Z. (2010). Composition and toxicity of essential oil of Illicium simonsii Maxim (Illiciaceae) fruit against the maize weevils. Records of Natural Products, 4:205–210. [Google Scholar] [Crossref]

23. Li, W.Q., Jiang, C.H., Chu, S.S., Zuo, M.X., & Liu, Z.L. (2010). Chemical composition and toxicity against Sitophilus zeamais and Tribolium castaneum of the essential oil of Murraya exotica aerial parts. Molecules, 15:5831–5839. [Google Scholar] [Crossref]

24. Tavares, W.D., Faroni, L.R.D., Ribeiro, R.C., Fouad, H.A., Freitas, S.D., & Zanuncio, J.C. (2014). Effects of astilbin From Dimorphandra mollis (Fabaceae) flowers and Brazilian plant extracts on Sitophilus zeamais (Coleoptera: Curculionidae). Florida Entomologist 97(3):892-901. DOI:10.1653/024.097.0347. [Google Scholar] [Crossref]

25. Gitahi, S.M., Piero, M.N., Mburu ,D.N., & Machocho, A.K. (2021). Repellent effects of selected organic leaf extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). The Scientific World Journal, Article ID 2718629, https://doi.org/10.1155/2021/2718629. [Google Scholar] [Crossref]

26. Benzi, V.S., Murray, A.P., & Ferrero, A.A. 2009. Insecticidal and insect-repellent activities of essential oils from Verbenaceae and Anacardiaceae against Rhizoperthadominica. Natural Products Communication, 4(9):1287-1290. [Google Scholar] [Crossref]

27. Koul, O., Walia, S., & Dhaliwal, G.S. (2008). Essential oils as green pesticides: potential and constraints. Biopesticides International, 4:6–84. [Google Scholar] [Crossref]

28. Yao, Y.J., Cai, W.L., Yang, C.J., Xue, D., and Huang, Y.Z. (2008). Isolation and characterization of insecticidal activity of (Z)-asarone from Acorus calamus L. Insect Science,5:229–236. doi: 10.1111/j.1744-7917.2008.00205.x. [Google Scholar] [Crossref]

29. Choi, W.S., Park, B.S., Lee, Y.H., Janga, D.Y., Yoon, H.Y., and Lee, S.F. (2006). Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Protection, 25:398-401. [Google Scholar] [Crossref]

30. Ojimelukwe, P.C., and C. Adler. (1999). Potential of zimtaldehyde, 4-allyl-anisol, linalool, terpineol and other phytochemicals for the control of confused flour beetle (Tribolium confusum J.D.V.) (Col.; Tenebrionidae). Journal of Pesticide Science, 72:81-86. [Google Scholar] [Crossref]

31. Varma, J., and Dubey, N.K. (2001). Efficacy of essential oils of Caesulia axillaris and Mentha arvensis against some storage pests causing biodeterioration of food commodities. International Journal of Food Microbiology, 68:207–210. doi: 10.1016/S0168-1605(01)00506-2. [Google Scholar] [Crossref]

32. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18:265–267. [Google Scholar] [Crossref]

33. Islam, M.S., Hasan, M.M., Xiong, W., and Zhang, S.C. (2009). Fumigant and repellent activities of essential oil from Coriandrum sativum (L.) (Apiaceae) against red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Pest Science, 82:171–177. doi: 10.1007/s10340-008-0236-7. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles