AI Readiness in National Cybersecurity Strategies: A Cross-Country Comparative Study
Authors
University of Chester (United Kingdom)
Teesside University (United Kingdom)
Teesside University (United Kingdom)
Article Information
DOI: 10.51584/IJRIAS.2025.1010000067
Subject Category: Artificial Intelligence
Volume/Issue: 10/10 | Page No: 839-846
Publication Timeline
Submitted: 2025-10-04
Accepted: 2025-10-10
Published: 2025-11-06
Abstract
The increasing integration of artificial intelligence (AI) into cybersecurity has reshaped national security strategies worldwide. This study investigates AI readiness in national cybersecurity strategies through a comparative analysis of three distinct governance models: the United States, China, and the European Union (represented by France). Using a systemic document review methodology, the research provides a comparative, cross-country analysis of AI readiness within national cybersecurity strategies. The results reveal three divergent strategic approaches to AI readiness: a public-private, market-driven ecosystem in the United States that fosters rapid innovation but can lead to fragmented national strategy; a top-down, state-led approach in China that enables rapid resource mobilisation and large-scale data collection at the potential cost of individual liberties; and a regulation-first framework in the European Union that prioritises ethical integrity and public trust. The analysis further found that a nation’s economic maturity and human capital are foundational to its capacity for AI readiness, regardless of its governance model. The discussion highlights a fundamental trade-off between the speed of innovation and ethical oversight, arguing that an effective national strategy must be holistic and adaptive, combining policy guidance with targeted investment in technology, talent, and international collaboration.
Keywords
AI readiness, cybersecurity, national strategies
Downloads
References
1. Adegbite, A.O., Akinwolemiwa, D.I., Uwaoma, P.U., Kaggwa, S., Akindote, O.J. and Dawodu, S.O. (2023). Review of cybersecurity strategies in protecting national infrastructure: Perspectives from the USA. Computer Science & IT Research Journal, 4(3), pp.200–219. doi:https://doi.org/10.51594/csitrj.v4i3.658. [Google Scholar] [Crossref]
2. Adewale, T. (2025). AI-driven cyberattacks and defence tactics: A critical analysis of adversarial threats in modern security systems. ResearchGate. Available at: https://www.researchgate.net/publication/390746598_AI-Driven_Cyber_Attacks_and_Defense_Tactics_A_Critical_Analysis_of_Adversarial_Threats_in_Modern_Security_Systems [Accessed 28 Apr. 2025]. [Google Scholar] [Crossref]
3. Ajani, H.A., Yusuf, O., Muogbo, C. and Mustapha, B. (2025). AI readiness framework for African businesses: Assessing capabilities and gaps. ResearchGate. doi:https://doi.org/10.13140/RG.2.2.22355.90406. [Google Scholar] [Crossref]
4. Al Dajeh, B.M. (2024). Artificial intelligence governance. Journal of Ecohumanism, 3(4), pp.300–313. doi:https://doi.org/10.62754/joe.v3i4.3515. [Google Scholar] [Crossref]
5. Arora, A.S., Saboia, L., Arora, A. and McIntyre, J.R. (2025). Human-centric versus state-driven. International Journal of Intelligent Information Technologies, 21(1), pp.1–13. doi:https://doi.org/10.4018/ijiit.367471. [Google Scholar] [Crossref]
6. Balcioğlu, Y.S., Çelik, A.A. and Altindağ, E. (2025). A turning point in AI: Europe’s human-centric approach to technology regulation. Journal of Responsible Technology, p.100128. doi:https://doi.org/10.1016/j.jrt.2025.100128. [Google Scholar] [Crossref]
7. Bommelaer, C., et al. (2017). Artificial intelligence and machine learning: Policy paper. Internet Society. Available at: https://www.internetsociety.org/resources/doc/2017/artificialintelligence-and-machine-learning-policy-paper/ [Google Scholar] [Crossref]
8. Cate, M. (2025). Global regulatory frameworks and their stance on AI in compliance. [Google Scholar] [Crossref]
9. Clapp, S. (2025). Defence and artificial intelligence. European Parliament. Available at: https://www.europarl.europa.eu/RegData/etudes/BRIE/2025/769580/EPRS_BRI(2025)769580_EN.pdf. [Google Scholar] [Crossref]
10. Cupać, J. and Sienknecht, M. (2024). Regulate against the machine: How the EU mitigates AI harm to democracy. Democratization, 31(5), pp.1–24. doi:https://doi.org/10.1080/13510347.2024.2353706. [Google Scholar] [Crossref]
11. Dimitriadis, D. (2025). US vs EU AI plans – A comparative analysis of the US and European approaches. Available at: https://dcnglobal.net/posts/blog/us-vs-eu-ai-plans-a-comparative-analysis-of-the-us-and-european-approaches [Accessed 5 Aug. 2025]. [Google Scholar] [Crossref]
12. European Parliament (2025). EU AI Act: First regulation on artificial intelligence. Available at: https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence. [Google Scholar] [Crossref]
13. Gilbert, C. and Gilbert, M.A. (2024). The impact of AI on cybersecurity defense mechanisms: Future trends and challenges. Global Scientific Journal, 12(9), pp.427–441. doi:https://doi.org/10.11216/gsj.2024.09.229721. [Google Scholar] [Crossref]
14. Gstrein, O.J., Haleem, N. and Zwitter, A. (2024). General-purpose AI regulation and the European Union AI Act. Internet Policy Review, 13(3). doi:https://doi.org/10.14763/2024.3.1790. [Google Scholar] [Crossref]
15. Isagah, T. and Dhaou, B. (2024). Artificial intelligence readiness in Africa: Status quo and future research. Proceedings of the 2024 International Conference on AI Applications, pp.430–437. doi:https://doi.org/10.1145/3680127.3680199. [Google Scholar] [Crossref]
16. Jørgensen, B.N. and Ma, Z.G. (2025). Impact of EU regulations on AI adoption in smart city solutions: A review of regulatory barriers, technological challenges, and societal benefits. Information, 16(7), p.568. doi:https://doi.org/10.3390/info16070568. [Google Scholar] [Crossref]
17. Kaur, R., Gabrijelčič, D. and Klobučar, T. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97(101804), pp.1–29. doi:https://doi.org/10.1016/j.inffus.2023.101804. [Google Scholar] [Crossref]
18. Khan, M.I., Arif, A., Khan, A.R.A., Anjum, N. and Arif, H. (2025). The dual role of artificial intelligence in cybersecurity: Enhancing defense and navigating challenges. International Journal of Innovative Research in Computer Science and Technology, 13(1), pp.62–67. doi:https://doi.org/10.55524/ijircst.2025.13.1.9. [Google Scholar] [Crossref]
19. Kharbanda, V., Seetharaman, A. and Maddulety, K. (2023). Application of artificial intelligence in cybersecurity. International Journal of Security and Privacy in Pervasive Computing, 15(1), pp.1–13. doi:https://doi.org/10.4018/ijsppc.318676. [Google Scholar] [Crossref]
20. Kumar, S. (2019). How AI & machine learning can help with government cyber security strategies. Xlpat. 30 July. Available at: https://en.xlpat.com/how-ai-machine-learning-can-helpwith-government-cyber-security-strategies/ [Google Scholar] [Crossref]
21. Ledbetter, L. (2022). Defense Advanced Research Projects Agency (DARPA). Webopedia. Available at: https://www.webopedia.com/definitions/darpa/ [Accessed 26 Sep. 2025]. [Google Scholar] [Crossref]
22. LG CNS (2016). Intelligence and security. LG CNS Blog. 7 November. Available at: https://blog.lgcns.com/1247 [Google Scholar] [Crossref]
23. Mary, B.J. (2025). Artificial intelligence as an anti-corruption tool (AI-ACT): Potentials and pitfalls for top-down and bottom-up approaches. ResearchGate. Available at: https://www.researchgate.net/publication/391662548_Artificial_Intelligence_as_an_Anti-Corruption_Tool_AI-ACT_-Potentials_and_Pitfalls_for_Top-down_and_Bottom-up_Approaches. [Google Scholar] [Crossref]
24. Peredy, Z., Julaiti, K. and Laki, B. (2022). New opportunities of the Chinese companies in the big data era. Employment, Education and Entrepreneurship (EEE-2022) Conference Proceedings. Available at: https://www.researchgate.net/publication/364821564_New_Opportunities_of_the_Chinese_Companies_in_the_Big_Data_Era. [Google Scholar] [Crossref]
25. Perlman, A. (2019). The growing role of machine learning in cybersecurity. Security Roundtable. 18 June. Available at: https://www.securityroundtable.org/the-growing-role-ofmachine-learning-in-cybersecurity/ [Google Scholar] [Crossref]
26. Perwej, Y., Abbas, S.Q., Dixit, J.P., Akhtar, N. and Jaiswal, A.K. (2021). A systematic literature review on the cyber security. International Journal of Scientific Research and Management, 9(12), pp.669–710. doi:https://doi.org/10.18535/ijsrm/v9i12.ec04. [Google Scholar] [Crossref]
27. Pina, E., Ramos, J., Jorge, H., Váz, P., Silva, J., Wanzeller, C., Abbasi, M. and Martins, P. (2024). Data privacy and ethical considerations in database management. Journal of Cybersecurity and Privacy, 4(3), pp.494–517. doi:https://doi.org/10.3390/jcp4030024. [Google Scholar] [Crossref]
28. Polyakov, M., Khanin, I., Shevchenko, G., Bilozubenko, V. and Korneyev, M. (2024). Systemic features of innovation development in the USA. Fìnansovo-kreditna dìâlʹnìstʹ: problemi teorìì̈ ta praktiki, 1(54), pp.348–363. doi:https://doi.org/10.55643/fcaptp.1.54.2024.4247. [Google Scholar] [Crossref]
29. Raji, I. and Sholademi, D. (2024). Predictive policing: The role of AI in crime prevention. International Journal of Computer Applications Technology and Research, 13(10). doi:https://doi.org/10.7753/ijcatr1310.1006. [Google Scholar] [Crossref]
30. Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V. and Floridi, L. (2019). The Chinese approach to artificial intelligence: An analysis of policy and regulation. SSRN Electronic Journal. doi:https://doi.org/10.2139/ssrn.3469783. [Google Scholar] [Crossref]
31. Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V. and Floridi, L. (2020). The Chinese approach to artificial intelligence: An analysis of policy, ethics, and regulation. AI & Society, 36. doi:https://doi.org/10.1007/s00146-020-00992-2. [Google Scholar] [Crossref]
32. Skare, M. and Soriano, D.R. (2021). How globalization is changing digital technology adoption: An international perspective. Journal of Innovation & Knowledge, 6(4), pp.222–233. Available at: https://www.sciencedirect.com/science/article/pii/S2444569X21000202. [Google Scholar] [Crossref]
33. Themann, S. (2025). Challenges and strategies used in implementing AI governance: A systematic literature review. Available at: https://su.diva-portal.org/smash/get/diva2:1983756/FULLTEXT01.pdf [Accessed 12 Sep. 2025]. [Google Scholar] [Crossref]
34. U.S. Department of War (2025). DARPA aims to develop AI, autonomy applications warfighters can trust. Available at: https://www.war.gov/News/News-Stories/Article/Article/3722849/darpa-aims-to-develop-ai-autonomy-applications-warfighters-can-trust/ [Accessed 26 Sep. 2025]. [Google Scholar] [Crossref]
35. White & Case (2024). AI Watch: Global regulatory tracker – United States. White & Case LLP. Available at: https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-tracker-united-states. [Google Scholar] [Crossref]
36. Wong, W., Wong, N.W.-M. and Hinnant, C. (2024). Adoption without transformation: AI and digital transformation in China and Taiwan. Proceedings of the 25th Annual International Conference on Digital Government Research, pp.807–814. doi:https://doi.org/10.1145/3657054.3657147. [Google Scholar] [Crossref]
37. Yazici, T. (2025). Toward a global standard for ethical AI regulation: Addressing gaps in AI-driven biometric and high-resolution satellite imaging in the EU AI Act. Law, Innovation and Technology, pp.1–29. doi:https://doi.org/10.1080/17579961.2025.2470589. [Google Scholar] [Crossref]
38. Yoo, G. (2017). Correlation between machine learning and information security. SK infosec Blog. 20 February. Available at: http://blog.naver.com/PostView.nhn?blogId=skinfosec2000&logNo=220937047579 [Google Scholar] [Crossref]
39. Zou, M. and Zhang, L. (2025). Navigating China’s regulatory approach to generative artificial intelligence and large language models. Cambridge Forum on AI: Law and Governance, 1. doi:https://doi.org/10.1017/cfl.2024.4. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Role of Artificial Intelligence in Revolutionizing Library Services in Nairobi: Ethical Implications and Future Trends in User Interaction
- ESPYREAL: A Mobile Based Multi-Currency Identifier for Visually Impaired Individuals Using Convolutional Neural Network
- Comparative Analysis of AI-Driven IoT-Based Smart Agriculture Platforms with Blockchain-Enabled Marketplaces
- AI-Based Dish Recommender System for Reducing Fruit Waste through Spoilage Detection and Ripeness Assessment
- SEA-TALK: An AI-Powered Voice Translator and Southeast Asian Dialects Recognition