Microbial Adaptation and Its Implications for Human Space Exploration: Challenges, Opportunities, and Sustainability

Authors

Mohana Priya R

Assistant Professor, Department of Microbiology, Velumanoharan Arts and Science College for Women, Ramanathapuram, Tamil Nadu (India)

Sindhuja G

Students, Master of Science, Department of Microbiology, Velumanoharan Arts and Science College for Women, Ramanathapuram, Tamil Nadu (India)

Yoga Shiva Shree S

Students, Master of Science, Department of Microbiology, Velumanoharan Arts and Science College for Women, Ramanathapuram, Tamil Nadu (India)

Vijaya Tharshini P

Students, Master of Science, Department of Microbiology, Velumanoharan Arts and Science College for Women, Ramanathapuram, Tamil Nadu (India)

Article Information

DOI: 10.51584/IJRIAS.2025.101400001

Subject Category: Microbiology

Volume/Issue: 10/14 | Page No: 1-4

Publication Timeline

Submitted: 2025-09-11

Accepted: 2025-09-18

Published: 2025-11-17

Abstract

Space microbiology studies how microorganisms adapt and survive in extreme space conditions such as microgravity, radiation, and vacuum. As space missions extend to the Moon, Mars, and beyond, understanding microbial behaviour is crucial for astronaut health, spacecraft systems, and the search for extraterrestrial life. This review focuses on microbial adaptation to microgravity, biofilm formation, radiation resistance, and microbial populations aboard spacecraft. Microgravity alters microbial growth and promotes biofilm formation, enhancing stress resistance. Radiation-resistant microbes like Deinococcus radiodurans offer potential applications in radiation shielding. Microbial presence on spacecraft presents challenges, such as increased virulence and biofilm-induced damage, but also opportunities for life support systems, including waste recycling and oxygen production. Effective microbial management is vital for sustaining long-term space missions. This review underscores the importance of space microbiology in ensuring safe, sustainable space exploration and advancing the search for life beyond Earth.

Keywords

Microbial adaptation, Microbial contamination, Microbial behaviour in space, Space biology

Downloads

References

1. Arentshorst, M., Ram, A. F., & Kock, M. (2012). Non-homologous end joining in fungi. Fungal Genetics and Biology, 49(2), 153-161. https://doi.org/10.1016/j.fgb.2011.12.002 [Google Scholar] [Crossref]

2. Baker, L. A., & Leff, L. (2005). Microbial production of valuable compounds in space: Opportunities and challenges. Space Biotechnology, 31(1), 34-45. https://doi.org/10.1002/sbt.2005.0032 [Google Scholar] [Crossref]

3. Baker, L. A., Kueppers, S., & Schlesinger, P. (2004). The effects of space radiation on microbial survival and growth. Space Research Journal, 45(2), 127-134. https://doi.org/10.1016/j.srj.2004.03.004 [Google Scholar] [Crossref]

4. Baker, L., Keegan, H., & Wu, F. (2004). Spaceflight-induced alterations in microbial behavior and structure. Journal of Microbial Space Studies, 15(1), 45-51. https://doi.org/10.1016/j.jms.2003.12.001 [Google Scholar] [Crossref]

5. Baumstark-Khan, C., & Facius, R. (2002). Radiation resistance in Deinococcus radiodurans. Research in Microbiology, 153(8), 527-532. https://doi.org/10.1016/S0923-2508(02)01345-7 [Google Scholar] [Crossref]

6. Benoit, R. M., & Klaus, D. M. (2005). Microbial contamination aboard the International Space Station: Prevention and monitoring protocols. Microbial Ecology in Space, 7(1), 12-20. https://doi.org/10.1002/jm.179 [Google Scholar] [Crossref]

7. Benoit, M. R., & Klaus, D. M. (2005). The microbial spaceflight environment: What are the potential health risks? Microbial Ecology, 49(3), 397-411. https://doi.org/10.1007/s00248-004-0238-9 [Google Scholar] [Crossref]

8. Bücker, S., & Horneck, G. (1975). Biological effects of space radiation on microorganisms: A study on Bacillus subtilis spores. Radiation Research, 52(3), 125-134. https://doi.org/10.2307/3572348 [Google Scholar] [Crossref]

9. Bücker, S., & Horneck, G. (1975). Microbial experiments in space: The Biostack experiment aboard the Apollo missions. Radiation Research, 63(1), 89-106. https://doi.org/10.2307/3574583 [Google Scholar] [Crossref]

10. Cadet, J., & Douki, T. (1992). Ultraviolet radiation-induced DNA damage: A mechanism for DNA repair and mutation. Journal of Photochemistry and Photobiology B: Biology, 15(1-2), 239-247. https://doi.org/10.1016/1011-1344(92)80061-R [Google Scholar] [Crossref]

11. Castro, E., Mendoza, F., & Zeng, Z. (2013). Microbial dynamics on long-duration space missions: Implications for human health and safety. Astrobiology Journal, 13(2), 78-89. https://doi.org/10.1089/ast.2013.0083 [Google Scholar] [Crossref]

12. Castro, J. L., De Angelis, C., & Medrano, J. (2013). Microbial life support systems in space exploration: Environmental impacts and biological considerations. International Journal of Astrobiology, 12(2), 71-85. https://doi.org/10.1017/S1473550412000466 [Google Scholar] [Crossref]

13. DeBoever, C. M., Walters, H. E., & Taylor, P. M. (2007). Horizontal gene transfer in spaceflight conditions: Potential for microbial adaptation to space environments. International Journal of Microbial Genetics, 44(4), 415-423. https://doi.org/10.1016/j.ijmg.2007.02.002 [Google Scholar] [Crossref]

14. England, R., Sutherland, L., & Martin, A. (2003). The effects of microgravity on bacterial membrane fluidity: A study of Pseudomonas aeruginosa in space conditions. Microbial Physiology, 22(1), 59-67. https://doi.org/10.1002/micr.2024 [Google Scholar] [Crossref]

15. England, W., Liu, J., & Staroselsky, A. (2003). Membrane fluidity in Pseudomonas aeruginosa under microgravity conditions. Journal of Microbiological Methods, 53(2), 153-161. https://doi.org/10.1016/j.mimet.2003.08.002 [Google Scholar] [Crossref]

16. Horneck, G. (1993). Microbial radiation resistance and space biology: The role of cosmic radiation in the space environment. Space Biology and Medicine, 7(1), 112-121. https://doi.org/10.1016/s0191-4263(93)00123-4 [Google Scholar] [Crossref]

17. Horneck, G. (1993). The Biostack experiment: Microbial experiments on the Apollo missions. Space Science Reviews, 62(1-2), 1-19. https://doi.org/10.1007/BF00452327 [Google Scholar] [Crossref]

18. Horneck, G., Baumstark-Khan, C., & Fritz, J. (2010). Space and microbial life: What are the risks for life on Earth? Astrobiology, 10(2), 115-130. https://doi.org/10.1089/ast.2009.0371 [Google Scholar] [Crossref]

19. Horneck, G., & Rettberg, P. (2010). Microbial survival in space: The influence of solar UV radiation on microbial DNA and its repair. Planetary and Space Science, 58(12), 1455-1464. https://doi.org/10.1016/j.pss.2010.03.009 [Google Scholar] [Crossref]

20. Klaus, D. M., et al. (1998). The impact of space travel on microbial contamination: Implications for astronaut health. Space Medicine and Biomedical Research, 41(2), 155-162. https://doi.org/10.1016/s0070-0190(98)00006-6 [Google Scholar] [Crossref]

21. Klaus, D. M., et al. (2004). Microgravity effects on bacterial growth and virulence: A comprehensive review of spaceflight studies. Microbial Ecology, 47(2), 101-110. https://doi.org/10.1007/s00248-003-2055-1 [Google Scholar] [Crossref]

22. Klaus, D. M., & Searles, M. M. (1998). The effect of spaceflight on microbial life. Microbial Ecology, 36(3), 243-252. https://doi.org/10.1007/s002489900122 [Google Scholar] [Crossref]

23. Micke, A., Schäfer, K., & Zimmermann, C. (1994). Radiation resistance of microorganisms: A review of recent findings. Radiation and Environmental Biophysics, 33(3), 227-235. https://doi.org/10.1007/BF02349329 [Google Scholar] [Crossref]

24. National Academies of Sciences and Medicine. (2018). Space microbiology: From the space environment to bioregenerative life support systems. National Academies Press. https://doi.org/10.17226/24844 [Google Scholar] [Crossref]

25. Newcombe, D., Schuerger, A. C., & Sutherland, J. C. (2005). Resistance of Bacillus spores to simulated Martian UV radiation. Astrobiology, 5(1), 1-12. https://doi.org/10.1089/ast.2005.5.1 [Google Scholar] [Crossref]

26. Nicholson, W. L., & Setlow, P. (2000). The spore photoproduct and its relevance to spore resistance. Journal of Applied Microbiology, 88(2), 35-42. https://doi.org/10.1046/j.1365-2672.2000.01014.x [Google Scholar] [Crossref]

27. Novikova, N. V., Solovjeva, T. A., & Makarova, S. S. (2006). Fungal microbiome aboard the International Space Station. Microbiology, 75(5), 536-543. https://doi.org/10.1134/S0026261706050092 [Google Scholar] [Crossref]

28. Senatore, A., Sbrana, A., & Martini, F. (2018). Spaceflight and microbial life: Understanding the impacts of space conditions on microbial health. Astrobiology Journal, 18(3), 201-214. https://doi.org/10.1089/ast.2017.1750 [Google Scholar] [Crossref]

29. Senatore, G., Millard, P., & Bernardi, S. (2018). Microbial life in space: A review of microbiological research aboard the International Space Station. Space Science Reviews, 214(2), 56-78. https://doi.org/10.1007/s11214-018-0524-0 [Google Scholar] [Crossref]

30. Shao, W., Zhao, M., & Liao, Z. (2020). Cosmic radiation and its effects on microbial life. Journal of Space and Environmental Medicine, 63(1), 10-19. https://doi.org/10.1016/j.jsem.2019.09.002 [Google Scholar] [Crossref]

31. Thevenet, D., et al. (1996). Effect of microgravity on microbial behavior: A study of Escherichia coli in space conditions. Microbial Space Research, 9(4), 214-220. https://doi.org/10.1002/msr.504 [Google Scholar] [Crossref]

32. Thevenet, J., Moineau, M., & Serrano, J. (1996). Microbial behavior in low-shear, low-turbulence conditions in space. Journal of Microbiological Methods, 25(1), 93-101. https://doi.org/10.1016/0167-7012(96)00030-0 [Google Scholar] [Crossref]

33. Wilson, W. H., et al. (2002a). Gene expression of Salmonella enterica in space: Effects of microgravity on virulence and metabolism. Molecular Microbiology, 25(1), 82-90. https://doi.org/10.1016/j.molmic.2001.11.009 [Google Scholar] [Crossref]

34. Zea, L., Phillips, R. A., & McCarter, C. L. (2017). The pathogenic potential of microorganisms in space: Implications for human health. Journal of Microbial Pathology, 54(2), 195-202. https://doi.org/10.1016/j.jmp.2017.03.007 [Google Scholar] [Crossref]

35. Zea, L., et al. (2017). Spaceflight-induced changes in microbial virulence and survival: Implications for astronaut health. Microbial Pathology, 56(2), 165-174. https://doi.org/10.1016/j.micpath.2017.03.008 [Google Scholar] [Crossref]

36. Zimmermann, C., Baumstark-Khan, C., & Micke, A. (1994). Radiation resistance mechanisms in Deinococcus radiodurans. Radiation and Environmental Biophysics, 33(3), 145-152. https://doi.org/10.1007/BF02349330 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles