Gut Content Analysis of Siganus canaliculatus (Danggit)

Authors

Renelee M. Subsuban

College Professor of Math and Science Department, University of Mindanao, Davao City (Philippines)

Aileen S. Espra

Faculty of Department of Environmental Science, School of Interdisciplinary Studies, MSU-IIT, Iligan City (Philippines)

Krystel Joyce S. Alido

Student-Researchers, BS Biology Program at the University of Mindanao, Matina, Davao City (Philippines)

Jeza E. Cuizon

Student-Researchers, BS Biology Program at the University of Mindanao, Matina, Davao City (Philippines)

Alejandro R. Dejan, Jr.

Student-Researchers, BS Biology Program at the University of Mindanao, Matina, Davao City (Philippines)

Article Information

DOI: 10.51584/IJRIAS.2025.10100000149

Subject Category: Biology

Volume/Issue: 10/10 | Page No: 1663-1678

Publication Timeline

Submitted: 2025-10-31

Accepted: 2025-11-07

Published: 2025-11-18

Abstract

The study aims to identify the gut content of Siganus canaliculatus (Danggit) found in a mangrove forest at Brgy. Tagabuli, Sta. Cruz, Davao del Sur. Sampling was done in two sampling stations namely: Area 1 (mangrove area) and Area 2 (aquaculture area). Results showed that percentage composition of prey items in Area 1 are composed of algae (78%), plankton (13%) and detritus (9%), while Area 2 is composed mostly of detritus (62%), algae (30%), planktons (7%) and others such as stone sediments, small shell crustacean and nylon fragments (1%). Proximate composition of Siganus canaliculatus flesh in Area 1 has Crude fat (11%), Crude protein (48%) and Ash (6%) while Area 2 has Crude fat (10%), Crude protein (51%) and Ash (28%). Siganus canaliculatus gathered in mangrove and aquaculture area consumed similar prey items like Melosira spp. (Diatoms), Meridion spp. (Diatoms), Nitzschia spp. (Diatoms), Ascartia spp. (Copepod) and Dreissena spp. (Zooplankton). Based on gut content analysis of Siganus canaliculatus, it is herbivorous. Hence, algae as the primary prey item of Siganus canaliculatus should be conserved, and harvesting of commercially important fishes should be monitored.

Keywords

Gut, content, analysis, Danggit, Siganus canaliculatus

Downloads

References

1. Abdel-Aziz, M. F., Mohammed, R. A., Abou-Zied, R. M., & Allam, S. M. (2016). Effect of feeding frequency and feeding time on growth performance, feed utilization efficiency and body chemical composition on Rabbitfish Siganus rivulatus fry and juvenile under laboratory condition. Egyptian Journal of Aquatic Biology and Fisheries, 20 (3), 35 - 52. [Google Scholar] [Crossref]

2. Ahlbeck, B., Hansson, S. & Hjerne, O. (2012). Evaluating fish diet analysis methods by individual-based modelling. Canadian Journal of Fisheries and Aquatic Sciences, 69, 1184-1201. doi:10.1139/f2012-051. [Google Scholar] [Crossref]

3. Al-Marzouqi, A., Al-Nadhi, A. & Al-Habsi, S. (2009). Stomach contents and length-weight relationship of the white-spotted rabbitfish Siganus canaliculatus (Park, 1797) from the Arabian Sea coast of Oman. Journal of Marine Biology 51(2): 211-216 [Google Scholar] [Crossref]

4. Babare R. S., Chavan, S. P. & Kannewad, P. M. (2013). Gut content analysis of Wallago attu and Mystus (Sperata) seenghala. The common Catfishes from Godavari River System in Maharastra State. Advances in Bioresearch, 4(2), 123- 128. [Google Scholar] [Crossref]

5. Babbie, Earl R. The Practice of Social Research. 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel.Doing Quantitative Research in Education with SPSS. 2nd edition. London: SAGE Publications, 2010. http://libguides.usc.edu/writingguide/quantitative [Google Scholar] [Crossref]

6. Bagarinao, T. U., Solis, N. B., Villaver, W. R. & Villaluz, A. C. (1986). Important fish and shrimp fry in Philippine coastal waters: Identification, collection and handling. (Aquaculture extension manual No. 10). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. [Google Scholar] [Crossref]

7. Bankole, N.O., Sule, O. D., Okwundu, E. C. & Amadu, M. (2001). Preliminary investigation into the fresh and catch assessment survey of Lake Alau. Annual report to National Institute for freshwater fisheries, pp. 22. [Google Scholar] [Crossref]

8. Bariche, M. (2006). Diet of the Lessepsian fishes, Siganus rivulatus and S. luridus (Siganidae) in the eastern Mediterranean: A bibliographic analysis. Cybium, 30(1), 41-49. [Google Scholar] [Crossref]

9. Bilogica. (n.d.). Retrieved from https://biologica.ca/organisms-we-identify/fish-stomach-contents/. [Google Scholar] [Crossref]

10. Bryan, P. (1975). Food Habits, Functional Digestive Morphology, and Assimilation Efficiency of the Rabbitfish Siganus spinus (Pisces, Siganidae) on Guam. Pacific Science. 29,3 p. 269-277. [Google Scholar] [Crossref]

11. Cuenca, G., Macusi, E., Abreo, N., Ranara, C., Andam, M., Cardona, L., et al. (2015). Mangrove Ecosystems and Associated Fauna with Special Reference to Mangrove Crabs in the Philippines: A Review. IAMURE International Journal of Ecology and Conservation, 15(1). [Google Scholar] [Crossref]

12. Craig, S. (2017). Understanding fish nutrition, feeds, and feeding. Virginia Cooperative Extension 420-256. Retrieved from www.ext.vt.edu. [Google Scholar] [Crossref]

13. David, D. L., Edward, A., Adass, P. A. & Jesse, C. (2010). Some aspect of water quality and the Biology of Clarias gariepinus in Vimtim Stream, Mubi Adamawa State, Nigeria. World Journal Fish Marine Science, 2(2), 129-133. [Google Scholar] [Crossref]

14. El-Sayed, A.M. (1994). Feeding habits of rabbitfishes, Siganus canaliculatus and Siganus javus fingerlings from the Arabian Gulf waters of Qatar. Indian Journal of Marine Sciences, 23, 112-114 [Google Scholar] [Crossref]

15. Eya, A. R., Lacuna, D. G., & Espra, A. S. (2011). Gut content analysis of selected commercially important species of coral reef fish in the Southwest Part of Iligan Bay, Northern Mindanao, Philippines. Publications of the Seto Marine Biological Laboratory, 41, 35-49. [Google Scholar] [Crossref]

16. Food and Agriculture Organization (FAO) 2020. Retrieved from https://www.bfar.da.gov.ph/wp-content/uploads/2022/02/2020-Fisheries-Profile-Final.pdf. [Google Scholar] [Crossref]

17. Froese, R. & Pauly, D. (2018). FishBase. World Wide Web electronic publication. Retrieved from www.fishbase.org. [Google Scholar] [Crossref]

18. Google maps. Retrieved from: https://www.google.com/maps/place/Tagabuli,+Santa+Cruz,+Davao+del+Sur). [Google Scholar] [Crossref]

19. Grey, J., Thackeray, S. J., Jones, R. I., & Shine, A. (2002). Ferox Trout (Salmo trutta) as Russian dolls': complementary gut content and stable isotope analyses of the Loch Ness foodweb. Freshwater Biology, 47(7), 1235-1243. [Google Scholar] [Crossref]

20. Hobson, E. S. (1974). Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fishery Bulletin, 72, 915-1031. [Google Scholar] [Crossref]

21. Houlihan, D. F., Boujard, T., & Jobling, M. (Eds.). (2001). Food intake in fish. Blackwell Science. [Google Scholar] [Crossref]

22. Hyslop, E.J. (1980) Stomach Contents Analysis A Review of Methods and Their Application. Journal of Fish Biology, 17, 411-429. [Google Scholar] [Crossref]

23. International Union for Conservation of Nature. (2016). Retrieved from http://www.iucnredlist.org/details/69689554/0. [Google Scholar] [Crossref]

24. Investopedia. (2018). Analysis of variance (ANOVA). Retrieved from https://www.investopedia.com. [Google Scholar] [Crossref]

25. Johannsson, O. E., Leggett, M. F., Rudstam, L. G., Servos, M. R., Mohammadian, M. A., Gal, G., & Hesslein, R. H. (2001). Diet of Mysis relicta in Lake Ontario as revealed by stable isotope and gut content analysis. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 1975-1986. [Google Scholar] [Crossref]

26. Kathiresan, K. & Bingham. (2001). Centre of advanced study in Marine Biology. Annamalai University. [Google Scholar] [Crossref]

27. Khabade, S. A. (2015). Study of gut contents of major carps for their food habits from Sidddhewadi lake of Tasgaontahsil of Sangli district Maharashtra. International Journal of Fisheries and Aquatic Studies, 2(4S), 01-04. [Google Scholar] [Crossref]

28. Koya, K. M., Kumar, V. V., Azeez, A., Sreenath, K. R., Dash, G., Bhadiya, S., et al. (2018). Diet composition and feeding dynamics of Trichiurus lepturus Linnaeus, 1758 off Gujarat, north-west coast of India. Indian Journal of Fisheries, 65. [Google Scholar] [Crossref]

29. Linde, M., Grau, A., Riera, F. & Massuti-Pascual, E. (2004). Analysis Of Trophic Ontogenyin Epinephelus Marginatus (Serranidae). Cybium 28(1): 27-35. [Google Scholar] [Crossref]

30. Lugendo, B. R., Nagelkerken, I., van der Velde, G., & Mgaya, YD. (2006). The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: Gut content and stable isotope analyses. J Fish Biol 69:1639–1661. [Google Scholar] [Crossref]

31. Mantyka, C. S. & Bellwood, D. R. (2007), Macroalgal grazing selectivity among herbivorous coral reef fishes. MARINE ECOLOGY PROGRESS SERIES. Vol. 352: 177–185. [Google Scholar] [Crossref]

32. Melville, A. J., & Connolly, R. M. (2003). Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia, 136(4), 499-507. [Google Scholar] [Crossref]

33. Nanjo, K., Kohno, H., & Sano, M. (2008). Food habits of fishes in the mangrove estuary of Urauchi River, Idiomata Island, southern Japan. Fisheries Science, 74(5), 1024-1033. [Google Scholar] [Crossref]

34. Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M., Clay, J., et al. (2000). Effect of aquaculture on world fish supplies. Nature, 405 (6790), 1017 - 1024. [Google Scholar] [Crossref]

35. Napiórkowska-Krzebietke, A. (2017). Phytoplankton as a basic nutritional source in diets of fish. J. Elem., 22(3): 831-841. DOI: 10.5601/jelem.2016.21.4.1375. [Google Scholar] [Crossref]

36. Omondi, R., Yasindi, A. W., Magana, A. M. (2011). Spatial and temporal variations of zooplankton in relation to some environmental factors in Lake Baringo, Kenya. Eger. J. Sci. Technol. 11: 29-50. [Google Scholar] [Crossref]

37. Parazo M.M. (1990). E¡ect of dietary protein and energy level on growth, protein utilization and carcass composition of rabbit¢sh, Siganus guttatus. Aquaculture 86, 41-49. [Google Scholar] [Crossref]

38. Philippine Statistics Authority. (2017). Fisheries statistics of the Philippines. Retrieved from http://psa.gov.ph/sites/default/files/FStatPhil14-16docx%282% 29.pdf. [Google Scholar] [Crossref]

39. Philippine Statistics Authority. (2024). Retrieved from:https://www.pressreader.com/philippines/businessmirror/20250130/281513641836733?srsltid=AfmBOorRj2HYaoSn2BmETSUzFHlliU3tNVJcnWgjWdCTWhoTGzThiB3d. [Google Scholar] [Crossref]

40. Pupulawaththa, A. (2018). Disintegration and Degradation of Fish Feed Pellets and Feces Under Aerobic Marine Conditions. Norway. [Google Scholar] [Crossref]

41. Rajesh, R., Annadurai, D., Sattanathan, G. & Shankar, M. (2018) [Google Scholar] [Crossref]

42. Robertson, A. I. & Blaber, S. J. M. (1992). Plankton, epibenthos and fish communities. pp. 173-224 pp. In: Robertson AI and Alongi DM Tropical Mangrove Ecosystems. Coastal and Estuarine Studies. 41. American Geophysical Union. 329 p. [Google Scholar] [Crossref]

43. Sabour W., Lakkis S., (2007) Diet and feeding habits of Siganus rivulatus and S. luridus two Red Sea migrants in the Syrian coastal waters (Eastern Mediterranean). Rapp Comm int Mer Medit 38:584. [Google Scholar] [Crossref]

44. Sertori, T. (2009). Meats, fish, eggs, nuts, and beans. New York: Marshall Cavendish Benchmark. [Google Scholar] [Crossref]

45. Sheaves, M. & Molony, B. (2000). Short circuit in the mangrove food chain. Marine Ecology Progress Series, 199, 97-109. [Google Scholar] [Crossref]

46. Tharwat, A. & Al-Owafeir, M. (2003). Comparative study on the rabbit fishes Siganus Canaliculatus inhabit the Arabian Gulf and Siganus rivula Tus inhabit the Red Sea in Saudi Arabia. Department of Aquatic Research Facility of Agricultural Sciences and Food King Faisal University, PO Box 420, Hofuf, 31982 Saudi Arabia. [Google Scholar] [Crossref]

47. Vikaspedia. (2019). Chemical composition of fish. Retrieved from http://vikaspedia.in/agriculture/fisheries/post-harvest-and-marketing/processing-in-fisheries/chemical-composition-of-fis [Google Scholar] [Crossref]

48. Wakil, U. M., Haruna, A. B., Mohammed, G. A., Ndirmbita1, W. L., Yachilla, B. M. & Kumai, M. U. (2014). Examinations of the stomach contents of two fish species (Clariasgariepinus and Oreochromisniloticus) in Lake Alau, North – Eastern Nigeria. Agriculture, Forestry and Fisheries, 3(5), 405-409. [Google Scholar] [Crossref]

49. World Fish Center. (2015). Retrieved from https://www.worldfishcenter.org/content/annual-report-20142015-0. [Google Scholar] [Crossref]

50. Worldwide Fund Global. (2009) Issues brief; no. 1701. [Google Scholar] [Crossref]

51. Zacharia, P. U. (n.d.). Trophodynamics and Review of methods for Stomach content analysis of fishes. [Google Scholar] [Crossref]

52. Zacharia, P.U. & Abdurahiman, K.P. (n.d.). Methods of stomach content analysis of fishes. CMFRI Winter School on Towards Ecosystem Based Management of Marine Fisheries – Building Mass Balance Trophic and Simulation Models. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles