Assessing Public Health Risks from Trace Element Contamination in Common Leafy Vegetables from Ondo, Nigeria, Using PIXE and Multivariate Statistics

Authors

Peter. T. Osuolale

Department of Information Systems and Technology, Kings University, Odeomu, Osun -State, Nigeria (Nigeria)

Joshua O Ojo

Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria (Nigeria)

Danjuma D Maza

Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, P.M.B. 5015, Ibadan, Oyo State, Nigeria (Nigeria)

Grace O Akinlade

Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, P.M.B. 5015, Ibadan, Oyo State, Nigeria (Nigeria)

Abayomi. M. Olaosun

Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, P.M.B. 5015, Ibadan, Oyo State, Nigeria (Nigeria)

Adetomiwa A. Adelade

Science Laboratory Technology Department, Federal College of Animal Health & PRODUCTION Technology, Apata, Ibadan, Oyo State, Nigeria. (Nigeria)

Tolulope Karokatose

Department of Physics with Electronics, University of Ilesa, Ilesa, Osun State. Nigeria (Nigeria)

Jesse. O. Sylvester

Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.10100000203

Subject Category: Public Health

Volume/Issue: 10/10 | Page No: 2499-2511

Publication Timeline

Submitted: 2025-11-07

Accepted: 2025-11-14

Published: 2025-11-25

Abstract

The consumption of leafy vegetables is a critical pathway for human exposure to essential and toxic trace elements, posing significant public health risks in rapidly urbanizing environments. This study provides a detailed assessment of the elemental composition of six commonly consumed vegetables in Ondo Metropolis, Nigeria, a region experiencing increasing anthropogenic pressure.
Ten composite samples from six vegetable types (Vernonia amygdalina, Talinum triangulare, Solanum macrocarpon, Amaranthus hybridus, Telfairia occidentalis, Solanecio biafrae) were analyzed using Proton Induced X-ray Emission (PIXE) spectroscopy. Rigorous quality control was implemented using Certified Reference Materials (CRMs).
The obtained data were subjected to a suite of statistical analyses, including descriptive statistics, the KruskalWallis H test, Spearman's rank correlation, and Principal Component Analysis (PCA). Furthermore, health risk indices such as the Target Hazard Quotient (THQ) and Hazard Index (HI) were calculated for Ni and Co.
Potassium was the most abundant macro-element (mean: 4541.8 ± 931.7 mg/kg). Alarmingly, Nickel (Ni) was detected in 60% of samples at concentrations ranging from 0.4 to 6.4 mg/kg, with a mean of 2.3 mg/kg, vastly exceeding the WHO/FAO safe limit of 0.3 mg/kg. Cobalt (Co) was ubiquitously present in all samples (0.8-6.1 mg/kg). Statistical analyses revealed significant (p < 0.05) inter-vegetable variation in elemental accumulation, with Vernonia amygdalina (Bitter Leaf) and Solanum macrocarpon (Garden Egg Leaf) identified as high accumulators. Strong positive correlations (ρ > 0.7) and PCA loadings identified a common source for Fe, Co, Ni, and Zn, indicative of a mixed lithogenic-anthropogenic origin.
The health risk assessment indicated a THQ > 1 for Ni through consumption of Vernonia amygdalina, signaling potential non-carcinogenic health risks. This study innovatively integrates highly sensitive PIXE spectroscopy with advanced multivariate statistics and quantitative health risk assessment models. It provides a critical, datadriven baseline for policymakers, public health officials, and agricultural agencies, pinpointing specific contaminants (Ni, Co), identifying "high-risk" vegetables, and elucidating pollution sources for targeted monitoring and intervention strategies to enhance food safety in the region.

Keywords

PIXE, Heavy Metals, Food Safety, Multivariate Analysis, Health Risk Assessment

Downloads

References

1. Food and Agriculture Organization of the United Nations (FAO). (2019). The State of Food and Agriculture: Moving Forward on Food Loss and Waste Reduction. Rome. [Google Scholar] [Crossref]

2. Nabulo, G., Young, S. D., & Black, C. R. (2010). Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Science of the Total Environment, 408(22), 5338–5351. [Google Scholar] [Crossref]

3. Barminas, J. T., Charles, M., & Emmanuel, D. (1998). Mineral composition of nonconventional leafy vegetables. Plant Foods for Human Nutrition, 53(1), 29–36. [Google Scholar] [Crossref]

4. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692. [Google Scholar] [Crossref]

5. Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G., & Li, X. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. Journal of Hazardous Materials, 186(1), 481–490. [Google Scholar] [Crossref]

6. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C., & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust and roadside soils along a major highway in Colombia. Science of the Total Environment, 553, 636–642. [Google Scholar] [Crossref]

7. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. [Google Scholar] [Crossref]

8. International Agency for Research on Cancer (IARC). (2012). Nickel and nickel compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C (pp. 169–218). Lyon, France: International Agency for Research on Cancer. [Google Scholar] [Crossref]

9. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679. [Google Scholar] [Crossref]

10. Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387, 43–56. [Google Scholar] [Crossref]

11. Jedy-Agba, E., Curado, M. P., Ogunbiyi, O., Oga, E., Fabowale, T., Igbinoba, F., Osubor, G., Otu, T., Kumai, H., Koechlin, A., Osinubi, P., Dakum, P., Blattner, W., & Adebamowo, C. A. (2012). Cancer incidence in Nigeria: a report from population-based cancer registries. Cancer Epidemiology, 36(5), e271– e278. [Google Scholar] [Crossref]

12. Johansson, S. A. E., & Campbell, J. L. (1988). PIXE: A Novel Technique for Elemental Analysis. John Wiley & Sons. [Google Scholar] [Crossref]

13. Espinoza-Quinones, F. R., Palacio, S. M., Galante, R. M., Zenatti, D. C., Sezerino, P. H., Rossi, N., Rizzutto, M. A., & Tabacniks, M. H. (2005). Trace element concentration in Sao Francisco river water using STXRF and PIXE techniques. Brazilian Journal of Physics, 35(3), 757–760. [Google Scholar] [Crossref]

14. Oluwatosin, G. A., Adeoyolanu, O. D., Ojo, A. O., Are, K. S., Dauda, T. O., & Aduramigba-Modupe, V. O. (2010). Heavy metal uptake and accumulation by edible leafy vegetable (Amaranthus hybridus L.) grown on urban valley bottom soils in southwestern Nigeria. Soil and Sediment Contamination, 19(1), 1– 20. [Google Scholar] [Crossref]

15. Akubugwo, E. I., Obasi, A., Chinyere, G. C., Eze, E., Nwokeoji, O., & Ugbogu, E. A. (2012). Phytoaccumulation effects of Amaranthus hybridus L grown on buwaya refuse dumpsites in Chikun, Nigeria on heavy metals. Journal of Biodiversity and Environmental Sciences, 2(1), 10–17. [Google Scholar] [Crossref]

16. Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Singh Sidhu, G. P., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 218, 1100-1108. [Google Scholar] [Crossref]

17. Maxwell, J. A., Teesdale, W. J., & Campbell, J. L. (1995). The Guelph PIXE software package II. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 95(3), 407–421. [Google Scholar] [Crossref]

18. United States Environmental Protection Agency (USEPA). (1989). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Washington, DC. EPA/540/1-89/002. [Google Scholar] [Crossref]

19. Harmanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chemistry Central Journal, 5(1), 64. [Google Scholar] [Crossref]

20. United States Environmental Protection Agency (USEPA). (2023). Integrated Risk Information System (IRIS). [Online] Accessed from: https://www.epa.gov/iris [Google Scholar] [Crossref]

21. Marschner, P. (2011). Marschner's Mineral Nutrition of Higher Plants (3rd ed.). Academic Press. [Google Scholar] [Crossref]

22. World Health Organization & Food and Agriculture Organization of the United Nations (WHO/FAO). (2007). Joint FAO/WHO food standards programme Codex Alimentarius Commission. 13th Session. Report of the Thirty-Eight Session of the Codex Committee on Food Hygiene. ALINORM 07/30/13. [Google Scholar] [Crossref]

23. Codex Alimentarius Commission. (1995). Codex general standard for contaminants and toxins in food and feed. (CODEX STAN 193-1995). [Google Scholar] [Crossref]

24. Baker, A. J. M. (1981). Accumulators and excluders -strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1-4), 643–654. [Google Scholar] [Crossref]

25. Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017. [Google Scholar] [Crossref]

26. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99-107. [Google Scholar] [Crossref]

27. Intawongse, M., & Dean, J. R. (2006). In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends in Analytical Chemistry, 25(9), 876-886. [Google Scholar] [Crossref]

28. United States Environmental Protection Agency (USEPA). (2011). Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC. EPA/600/R-09/052F. [Google Scholar] [Crossref]

29. Bashir, S., Shaaban, M., Hussain, Q., Smalla, K., & Zhu, J. (2018). Efficiency of biochar and compost for immobilizing cadmium and lead in contaminated soil. Chemosphere, 204, 514-522. [Google Scholar] [Crossref]

30. Antweiler, R. C., & Taylor, H. E. (2008). Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics. Environmental Science & Technology, 42(10), 3732–3738. [Google Scholar] [Crossref]

31. National Population Commission (NPC) [Nigeria]. (2006). Population and Housing Census of the Federal Republic of Nigeria: Priority Tables. Vol. 1. [Google Scholar] [Crossref]

32. Nigerian Meteorological Agency (NIMET). (2018). Climate Review Bulletin for Ondo State. [Google Scholar] [Crossref]

33. Ojo, J. S., & Adeyemi, G. T. (2014). Assessment of the basement complex geology and its engineering characteristics in Akure metropolis, Southwestern Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 4(2), 1-15. [Google Scholar] [Crossref]

34. Adeyemi, O. O., & Ojo, O. J. (2019). Urbanization and its impact on land use changes in Ondo Metropolis, Nigeria. Journal of Environmental Geography, 12(1-2), 11-20. [Google Scholar] [Crossref]

35. Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metals content in soils, crops and groundwater. Agriculture, Ecosystems & Environment, 109(3-4), 310–322. [Google Scholar] [Crossref]

36. Wei, C. Y., & Chen, T. B. (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere, 63(6), 1048–1053. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles