Biosynthesis of Ag-Cu-Al Nanoparticles for Efficient Adsorption of Lead, Iron and Chromium from Industrial Wastewater
Authors
Department of Chemistry, University of Jos, P.M.B 2084, Jos, Plateau (Nigeria)
Department of Chemistry, Abubakar Tafawa Balewa University, Bauchi 740101 (Nigeria)
Department of Chemistry, Abubakar Tafawa Balewa University, Bauchi 740101 (Nigeria)
Department of Chemistry, Abubakar Tafawa Balewa University, Bauchi 740101 (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.101100039
Subject Category: Chemistry
Volume/Issue: 10/11 | Page No: 399-410
Publication Timeline
Submitted: 2025-11-16
Accepted: 2025-11-25
Published: 2025-12-09
Abstract
Lack of proper effluent disposal methods in industries has led to an exacerbation of the risk posed by heavy metal contaminants present in industrial wastewater. Several approaches have been explored to mitigate these harmful threats but, most of these approaches have several limitations such as, lacking selectivity, removing essential ions along with heavy metals, high post-treatment cost and generating toxic byproducts which further contaminates the environment. To address these difficulties, nanoparticles have recently been employed to mitigate these limitations. Nanoparticles, owing to their minute size and large surface-to-volume ratio, exhibit enhanced reactivity and adsorption capacities, making them exceptional contenders for heavy metal removal. Furthermore, the synergistic effect of trimetallic nanoparticles has also increased its efficacy as an adsorbent. This study efficiently biosynthesized silver-copper-aluminum trimetallic nanoparticles (Ag-Cu-Al NPs) using aqueous leaves extract of Hierochloe odorata at room temperature. The synergistic effect of the three metals was efficiently harnessed in conjunction with the biologically active components from Hierochloe odorata present in the nanoparticles, to enhance the adsorption affinity of the nanoparticles towards available heavy metal ions present in the wastewater. The biosynthesized Ag-Cu-Al NPs was first confirmed by an obvious color shift from grey to olive green after adding the aqueous leaves extract to the trimetallic salt solution of silver nitrate, copper chloride and aluminum oxide. UV-vis spectroscopy of the nanoparticles presented a distinct peak maximum at 405 nm. The possible secondary metabolites responsible for bio-reduction, capping and homogeneity of the nanoparticles were assessed using FTIR. The crystalline nature and particle size of the NPs were investigated using XRD. SEM-EDS analysis revealed the surface texture and constituent elements of the NPs. Adsorption studies demonstrated that the biosynthesized Ag-Cu-Al nanoparticles acts as a highly efficient nano-adsorbent for the removal of lead, iron and chromium from industrial wastewater.
Keywords
Nanoparticles, Wastewater, Heavy metals
Downloads
References
1. Henke, K. Arsenic: environmental chemistry, health threats and waste treatment: John Wiley & Sons, 2009 [Google Scholar] [Crossref]
2. Qasem, N.A.A., Mohammed, R.H., and Lawal, D.U 2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean. Water 4, 36. doi:10.1038/s41545-02100127-0 [Google Scholar] [Crossref]
3. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, Article 402647. https://doi.org/10.5402/2011/402647 [Google Scholar] [Crossref]
4. Roy, B., Bhunia, B., Bandyopadhyay, T. K., Khan, S. A., Nandi, N. B., and Nath, P. C. (2024). “Water pollution by heavy metals and their impact on human health,” in Handbook of water pollution (Wiley), 333–352. doi:10.1002/9781119904991.ch10 [Google Scholar] [Crossref]
5. Edo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Ikpekoro, V. O., Obasohan, P., et al. (2024). Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem. Ecol. 40, 322–349. doi:10.1080/02757540.2024.2306839 [Google Scholar] [Crossref]
6. WHO (2022). Arsenic. Available at: https://www.who.int/news-room/fact-sheets/ detail/arsenic. 12. [Google Scholar] [Crossref]
7. WHO (2023). Lead poisoning. Available at: https://www.who.int/news-room/factsheets/detail/lead-poisoning-and-health. [Google Scholar] [Crossref]
8. T Pavesi, J.C. Moreira (2020). Mechanisms and individuality in chromium toxicity in humans 15. J. Appl. Toxicol., 40, pp. 1183-1197 [Google Scholar] [Crossref]
9. B. Aboli, D. Jafari, H. Esmaeili (2020). Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous onto activated carbon prepared from citrus limetta leaves. Carbon Lett., 10.1007/s42823-02000141-1 [Google Scholar] [Crossref]
10. A. Karmakar, A. Paul, I.R. Santos, P.M. Santos, Guedes, M.F. da Silva, A.J. Pombeiro (2023). Novel anthracene and pyrene containing Cd (II)-based coordination polymers for adsorptive removal of toxic dyes from aqueous medium. Colloids Surf. A Physicochem. Eng. Asp., 67, Article 131488 [Google Scholar] [Crossref]
11. B. Mu, Y. Yang, L. Xu (2023). Rational fabrication of completely amorphous chitosan - formyl sucrose sorbents with excellent durability and regenerability for high - throughput dye removal. Chem. Eng. J., 46 (1), Article 142134 [Google Scholar] [Crossref]
12. Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., et al. (2021). Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22, 101504. doi:10. 1016/j.eti.2021.101504 [Google Scholar] [Crossref]
13. Zinicovscaia, I. (2016). “Conventional methods of wastewater treatment,” in Cyanobacteria for bioremediation of wastewaters (Cham: Springer International Publishing), 17–25. doi:10.1007/978-3319-26751-7_3 [Google Scholar] [Crossref]
14. Solomon, N. O., Kanchan, S., and Kesheri, M. (2024b). Nanoparticles as detoxifiers for industrial wastewater. Water Air Soil Pollut. 235, 214. doi:10.1007/s11270-024 07016-5 [Google Scholar] [Crossref]
15. Sarma, G. K., Sen Gupta, S., and Bhattacharyya, K. G. (2019). Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ. Sci. Pollut. Res. 26, 6245–6278. doi:10.1007/s11356018-04093-y [Google Scholar] [Crossref]
16. Garcia-Segura, S., Qu, X., Alvarez, P. J., Chaplin, B. P., Chen, W., Crittenden, J. C., et al. (2020). Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater–a perspective. Environ. Sci. Nano 7, 2178–2194. doi:10.1039/d0en00194e [Google Scholar] [Crossref]
17. Yu, G., Wang, X., Liu, J., Jiang, P., You, S., Ding, N., et al. (2021). Applications of nanomaterials for heavy metal removal from water and soil: a review. Sustainability 13, 713. doi:10.3390/su13020713 [Google Scholar] [Crossref]
18. P.L. Guillaume, M. Visa, A. Chelaru, O. Lassiné (2018). Titanium oxideclay” as adsorbent and photocatalysts for wastewater treatment. J. Memb. Sci. Technol., 8 (1), pp. 176-186 [Google Scholar] [Crossref]
19. K. Yang, Y. Liu, Z. Wang, X. Xu, Y. Li, C. Zhou (2019). Applications and characteristics of Fe– Mn binary oxides for Sb(V) removal in textile wastewater: selective adsorption and the fixed-bed column study. J. Chemosphere, 232, pp. 254-263 [Google Scholar] [Crossref]
20. E. Leiva, C. Tapia, C. Rodríguez (2021). Removal of Mn (II) from acidic waste waters using graphene oxide-ZnO nanocomposites. Molecules 26(2713): 1–18. J. Appl. Water. Sci., 12 (19) [Google Scholar] [Crossref]
21. Tang, M.; Luo, S.; Wang, K.; Du, H.; Sriphathoorat, R.; Shen, P. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795. [Google Scholar] [Crossref]
22. Kamli, M.; Srivastava, V.; Hajrah, N.; Sabir, J.; Hakeem, K.; Ahmad, A.; Malik, M. Facile BioFabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. J. Fungi 2021, 7, 62 [Google Scholar] [Crossref]
23. Mittal, S.; Roy, A. (2021). Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, pp. 287–308. [Google Scholar] [Crossref]
24. “Hierochloe arctica J. presl | plants of the World Online|Kew Science” Plants of the World Online. Retrieved 14 February 2021. [Google Scholar] [Crossref]
25. Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., et al. (2022a). Nanomaterials as a sustainable choice for treating wastewater. Environ. Res. 214, 113807. doi:10.1016/j.envres.2022.113807 [Google Scholar] [Crossref]
26. Zeng, X., Zhang, G., Zhu, J., and Wu, Z. (2022). Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review. Environ. Sci. Water Res. and Technol. 8 (5), 907–925. doi:10.1039/d1ew00868d [Google Scholar] [Crossref]
27. Shroog Shdied Royji Albeladi, Maqsood Ahmad Malik, Shaeel Al-thabaiti, (2020). Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation, Journal of Materials Research and Technology, volume 9, Issue 5, p 10031 – 10044, ISSN 2238 – 7854, https://doi.org/10.1016/j.jmrt.2020 [Google Scholar] [Crossref]
28. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:296–302 [Google Scholar] [Crossref]
29. Verma AD, Pal S, Verma P, Srivastava V, Mandal RK, Sinha I (2017) Ag-Cu bimetallic nanocatalysts for p-nitrophenol reduction using a green hydrogen source. J Environ Chem Eng 5:6148–6155 [Google Scholar] [Crossref]
30. Rosbero TMS, Camacho DH (2017) Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. J Environ Chem Eng 5:2524–2532. [Google Scholar] [Crossref]
31. Khan, F., Shariq, M., Asif, M., Siddiqui, M. A., Malan, P., & Ahmad, F. (2022). Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials, 12(4), 673. [Google Scholar] [Crossref]
32. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. [Google Scholar] [Crossref]
33. Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 8190. [Google Scholar] [Crossref]
34. Zhang, D., Ma, X. L., Gu, Y., Huang, H., & Zhang, G. W. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8, 799. [Google Scholar] [Crossref]
35. Singh, J., Kumar, V., Kim, K. H., & Rawat, M. (2020). Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental Research, 177, 108569. [Google Scholar] [Crossref]
36. Gupta, V.K, Saleh, T.A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environ Sci Pollut Res 20, 2828-2843. https://doi.org/10.1007/s11356-013-15241 [Google Scholar] [Crossref]
37. Kumar, I., Mondal, M., & Sakthivel, N. (2023). Green synthesis of nanomaterials for environmental remediation. In Green Functionalized Nanomaterials for Environmental Applications (pp. 1-22). Elsevier. [Google Scholar] [Crossref]
38. Velsankar, K., Sudhahar, S., Maheshwaran, G., & Krishna Kumar, M. (2020). Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. Journal of Photochemistry and Photobiology B: Biology, 205, 111845. [Google Scholar] [Crossref]
39. Njoku, V. O., Islam, M. A., Asif, M., & Hameed, B. H. (2014). Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption. Chemical Engineering Journal, 251, 183-191. [Google Scholar] [Crossref]
40. He, J., Li, Y., Wang, C., Zhang, K., Lin, D., Kong, L., & Liu, J. (2019). Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Applied Surface Science, 476, 633-640. [Google Scholar] [Crossref]
41. Susmita Sen Gupta, Krishna G. Bhattacharyya (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162. 39-58. doi:10.1016/j.cis.2010.12.004 [Google Scholar] [Crossref]
42. Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromiumcontaminated water and wastewater: A review. Water, Air, & Soil Pollution, 200(1-4), 59-77. [Google Scholar] [Crossref]
43. Kumar, R., Laskar, M.A, Hewaidy, I.F., et al. (2019). Modified Adsorbents for Removal of Heavy Metals from Aqueous Environment. A Review. Earth Systems and Environment, 3, 83-93., https://doi.org/10.1007/s41748-018-0085-3 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications