Iot-Enabled Current–Differential Analytics for Electricity Meter Bypass Detection in Low-Voltage Distribution Systems

Authors

John Kojo Annan

Electrical and Electronic Engineering Department, University of Mines and Technology, Tarkwa (Ghana)

Lordina Eshun

Electrical and Computer Engineering Department, University of Memphis, Memphis (USA)

Article Information

DOI: 10.51584/IJRIAS.2025.10120015

Subject Category: Social science

Volume/Issue: 10/12 | Page No: 182-196

Publication Timeline

Submitted: 2025-12-16

Accepted: 2025-12-23

Published: 2026-01-02

Abstract

Electricity theft remains a critical challenge for power utilities, particularly in developing economies where non-technical losses significantly disrupt revenue recovery and system reliability. Meter bypassing, where consumers divert current away from the energy meter, is the most pervasive form of electricity theft in Ghana. This study develops and evaluates a conceptual Internet of Things (IoT)-based monitoring system designed to detect meter bypass using a dual current-sensing architecture. The system employs two ACS712 Hall-effect current sensors, an ATmega328p-PU microcontroller, a SIM800A GSM module for SMS alerts, and an ESP8266 WiFi module for cloud-based reporting to the ThingSpeak® platform. Detection relies on a real-time current-difference algorithm that compares load and meter currents within a mathematical tolerance threshold. Simulation using Proteus 8.3 and prototype implementation confirm that the system accurately detects bypass conditions and enables remote disconnection of supply. This research demonstrates a scalable approach for reducing non-technical losses in low-voltage networks.

Keywords

Electricity Theft, Energy Meter, Micro controller, Meter Bypass

Downloads

References

1. Alfriehat, N., Anbar, M., Aladaileh, M., Hasbullah, I., Shurbaji, T.A., Karuppayah, S. and Almomani, A. (2024), RPL-Based Attack Detection Approaches in IoT Networks: Review and Taxonomy, Artificial Intelligence Review, 57(9), p.248. [Google Scholar] [Crossref]

2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and Ayyash, M. (2015), “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communications Surveys & Tutorials, 17(4), pp. 2347–2376. [Google Scholar] [Crossref]

3. Aswini, R., and Keerthihaa, V. (2020), “IoT Based Smart Energy Theft Detection and Monitoring System for Smart Home”, International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India pp. 1 – 6. [Google Scholar] [Crossref]

4. Bansal, D., Gupta, K., Sharen Ganesh, M.C., Goyal, J., Tharani, K. and Sharma, S. (2022), “Smart Energy Meter Based on Hall Effect Current Sensing Techniques with IoT Modules”. Journal of Information and Optimization Sciences, 43(1), pp.225-231. [Google Scholar] [Crossref]

5. Calamaro, N., Levy, M., Ben-Melech, R. and Shmilovitz, D., 2022. TNT Loss: A Technical and Nontechnical Generative Cooperative Energy Loss Detection System. Sensors, 22(18), p.7003. [Google Scholar] [Crossref]

6. Cardenas, A. A., Amin, S. and Sastry, S. (2008), “Secure Control: Towards Survivable Cyber-Physical Systems”, 28th International Conference on Distributed Computing Systems Workshops, pp. 495-500. [Google Scholar] [Crossref]

7. Chen, Y., Hua, G., Feng, D., Zang, H., Wei, Z., and Sun, G. (2020), “Electricity Theft Detection Model for Smart Meter Based on Residual Neural Network”, 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi'an, China, pp. 1 – 5. [Google Scholar] [Crossref]

8. Czechowski, R., and Kosek, A. M. (2016), “The Most Frequent Energy Theft Techniques and Hazards in Present Power Energy Consumption”, IEEE Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), Vienna, Austria, pp. 1 – 7. [Google Scholar] [Crossref]

9. Datta, A., Raj, K. and Sarker, R., 2019, September. Implementation of a high accuracy ac current sensing scheme using hall-sensor. In 2019 International Conference on Energy Management for Green Environment (UEMGREEN) (pp. 1-4). IEEE. [Google Scholar] [Crossref]

10. De Souza, M. A., Pereira, J. L., Alves, G. D. O., de Oliveira, B. C., Melo, I. D., and Garcia, P. A. (2020), “Detection and Identification of Energy Theft in Advanced Metering Infrastructures”, Electric Power Systems Research, Vol. 182, p. 106258. [Google Scholar] [Crossref]

11. Depuru, S. S. S. R., Wang, L. and Devabhaktuni, V. (2011), “Electricity Theft: Overview, Issues, Prevention and a Smart Meter Based Approach”, Energy Policy, 39(2), pp. 1007–1015. [Google Scholar] [Crossref]

12. Deva, S.V.S.V.P. and Akashe, S. (2017), “Implementation of GSM Based Security System with IOT Applications”. International Journal of Computer Network and Information Security, 14(6), 13 p.. [Google Scholar] [Crossref]

13. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C. and Hancke, G. P. (2013), “Smart Grid Technologies: Communication Technologies and Standards”, IEEE Transactions on Industrial Informatics, 7(4), pp. 529–539. [Google Scholar] [Crossref]

14. Kamatagi, A. P., Umadi, R. B., and Sujit, V. (2020), “Development of Energy Meter Monitoring System (EMMS) for Data Acquisition and Tampering Detection using IoT”, Proceedings of CONECCT 2020 - 6th IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, pp. 1 – 6. [Google Scholar] [Crossref]

15. Perrig, A., Stankovic, J. and Wagner, D. (2004), “Security in Wireless Sensor Networks”, Communications of the ACM, 47(6), pp. 53–57. [Google Scholar] [Crossref]

16. Roman, R., Lopez, J. and Mambo, M. (2018), “Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges”, Future Generation Computer Systems, 78, pp. 680–698. [Google Scholar] [Crossref]

17. Sadeghi, A. R., Wachsmann, C. and Waidner, M. (2017), “Security and Privacy Challenges in Industrial Internet of Things”, Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6. [Google Scholar] [Crossref]

18. Tangsunantham, N., Suchat, N., Varunyou N., Somchai T., and Chaiyod P. (2013), “Experimental Performance Analysis of Current Bypass Anti-Tampering in Smart Energy Meters”, Australasian Telecommunication Networks and Applications Conference (ATNAC), Christchurch, New Zealand, pp. 124 – 129. [Google Scholar] [Crossref]

19. Yakubu, O., Babu, N. and Adjei, O. (2018), “Electricity theft: Analysis of the underlying contributory factors in Ghana”, Energy Policy, Vol. 123, pp. 611 – 618. [Google Scholar] [Crossref]

20. Yan, Z. and Wen, H. (2021), Performance Analysis of Electricity Theft Detection for the Smart Grid: An Overview. IEEE Transactions on Instrumentation and Measurement, 71, pp.1-28. [Google Scholar] [Crossref]

21. Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., and Yang, B. (2019), “Energy Theft Detection with Energy Privacy Preservation in the Smart Grid”, IEEE Internet of Things Journal, Vol. 5, No. 6, pp. 7659 – 7669. [Google Scholar] [Crossref]

22. Zanella, A., Bui, N., Castellani, A., Vangelista, L. and Zorzi, M. (2014), “Internet of Things for Smart Cities”. IEEE Internet of Things journal, 1(1), pp.22-32. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles