A Neurocognitive Framework to Explain Apparent Extrasensory Perception & Object Identification under Blindfold Conditions

Authors

Sanjay Kaushik

Department of Ophthalmology, Geetanjali Hospital, Hisar (India)

Aditi Kaushik

Department of Biotechnology, NIILM University, Kaithal (India)

Article Information

DOI: 10.51584/IJRIAS.2026.11010013

Subject Category: Psychology

Volume/Issue: 11/1 | Page No: 164-176

Publication Timeline

Submitted: 2025-12-31

Accepted: 2026-01-05

Published: 2026-01-22

Abstract

Claims that blindfolded youngsters can identify items, read text, or describe images are widely promoted in educational and commercial programs, which are commonly referred to as "midbrain activation" or intuition training. Proponents of these programs frequently interpret such examples as proof of extrasensory perception (ESP), nonverbal cognition, or enhanced intuitive ability. However, these ideas are unsupported by actual evidence and contradict well-established sensory neuroscience principles. Recent research in vision science, cognitive psychology, and neuroimaging suggests that even severely degraded visual input can be sufficient for object recognition when paired with predictive coding and memory-based template matching. Peripheral vision and low-resolution retinal input, which are frequently disregarded in lay explanations, provide partial information that the brain can use for shape, contour, and color processing. Furthermore, top-down modulation from the prefrontal, orbitofrontal, and parietal cortex aids in the reconstruction of missing information, allowing for quick perceptual inference from partial sensory data. Furthermore, cognitive and social factors such as ideomotor effects, attentional bias, expectancy, and reinforcement can exaggerate perceived task accuracy, creating the appearance of exceptional ability. In this study, we investigate these assertions using a rigorous neuroscientific approach. We propose a mechanistic model that incorporates low-level visual leakage, coarse peripheral cue extraction, predictive coding, and memory-driven template matching into the ventral visual stream. We highlight the functions of V1-V4, the inferotemporal cortex, the lateral occipital cortex, and higher-order top-down networks in reconstructing object identity from degraded or incomplete sensory input. By mapping these brain and cognitive processes, we provide a holistic framework for explaining actions that are frequently misattributed to non-visual or psychic powers, highlighting the value of controlled experimental paradigms and evidence-based evaluation in educational and training settings.

Keywords

Predictive coding, Ventral visual stream, Inferotemporal cortex, Memory template matching

Downloads

References

1. Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1521), 1211-1221. https://doi.org/10.1098/rstb.2008.0300 [Google Scholar] [Crossref]

2. Vater, C., Wolfe, B., & Rosenholtz, R. (2022). Peripheral vision in real-world tasks: A systematic review. Psychonomic bulletin & review, 29(5), 1531-1557. https://doi.org/10.3758/s13423-022-02117-w [Google Scholar] [Crossref]

3. Biederman I. (1987). Recognition-by-components: a theory of human image understanding. Psychological review, 94(2), 115-147. https://doi.org/10.1037/0033-295X.94.2.115 [Google Scholar] [Crossref]

4. Shin, Y. K., Choe, S., & Kwon, O. S. (2023). Strong evidence for ideomotor theory: Unwilled manifestation of the conceptual attribute in movement control. Frontiers in psychology, 14, 1066839. https://doi.org/10.3389/fpsyg.2023.1066839 [Google Scholar] [Crossref]

5. Hodson, R., Mehta, M., & Smith, R. (2024). The empirical status of predictive coding and active inference. Neuroscience & Biobehavioral Reviews, 157, Article 105473. https://doi.org/10.1016/j.neubiorev.2023.105473 [Google Scholar] [Crossref]

6. Price, T. D., & Khan, R. (2017). Evolution of visual processing in the human retina. Trends in Ecology & Evolution, 32(11), 810-813. https://doi.org/10.1016/j.tree.2017.09.001 [Google Scholar] [Crossref]

7. Joukal, M. (2017). Anatomy of the Human Visual Pathway. In: Skorkovská, K. (eds) Homonymous Visual Field Defects. Springer, Cham. https://doi.org/10.1007/978-3-319-52284-5_1 [Google Scholar] [Crossref]

8. Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649-677. https://doi.org/10.1146/annurev.neuro.27.070203.144220 [Google Scholar] [Crossref]

9. Gilbert, C., Li, W. Top-down influences on visual processing. Nat Rev Neurosci 14, 350-363 (2013). https://doi.org/10.1038/nrn3476 [Google Scholar] [Crossref]

10. Xu Y. (2018). The Posterior Parietal Cortex in Adaptive Visual Processing. Trends in neurosciences, 41(11), 806-822. https://doi.org/10.1016/j.tins.2018.07.012 [Google Scholar] [Crossref]

11. Carlin, J. D., & Calder, A. J. (2013). The neural basis of eye gaze processing. Current Opinion in Neurobiology, 23(3), 450-455. https://doi.org/10.1016/j.conb.2012.11.014 [Google Scholar] [Crossref]

12. Walsh, K. S., McGovern, D. P., Clark, A., & O'Connell, R. G. (2020). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464(1), 242-268. https://doi.org/10.1111/nyas.14321 [Google Scholar] [Crossref]

13. Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area V4. Nature Neuroscience, 5(12), 1332-1338. https://doi.org/10.1038/nn972 [Google Scholar] [Crossref]

14. Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195-200. https://doi.org/10.1111/j.1467-9280.1994.tb00500.x [Google Scholar] [Crossref]

15. Cichy, R., Pantazis, D. & Oliva, A. Resolving human object recognition in space and time. Nat Neurosci 17, 455-462 (2014). https://doi.org/10.1038/nn.3635 [Google Scholar] [Crossref]

16. Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. Current Opinion in Neurobiology, 37, 23-35. https://doi.org/10.1016/j.conb.2015.12.001 [Google Scholar] [Crossref]

17. Levinson, M., Podvalny, E., Baete, S.H. et al. Cortical and subcortical signatures of conscious object recognition. Nat Commun 12, 2930 (2021). https://doi.org/10.1038/s41467-021-23266-x [Google Scholar] [Crossref]

18. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 361(1476), 2109-2128. https://doi.org/10.1098/rstb.2006.1934 [Google Scholar] [Crossref]

19. Mascle, C., Jouffrais, C., Kaminski, G., & Bara, F. (2022). Displaying easily recognizable tactile pictures: A comparison of three illustration techniques with blind and sighted children. Journal of Applied Developmental Psychology, 78, Article 101364. https://doi.org/10.1016/j.appdev.2021.101364 [Google Scholar] [Crossref]

20. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience & Biobehavioral Reviews, 32(1), 123-142. https://doi.org/10.1016/j.neubiorev.2007.06.004 [Google Scholar] [Crossref]

21. Tottenham, N., & Gabard Durnam, L. J. (2017). The developing amygdala: a student of the world and a teacher of the cortex. Current Opinion in Psychology, 17, 55-60. https://doi.org/10.1016/j.copsyc.2017.06.012 [Google Scholar] [Crossref]

22. Teichmann, L., Edwards, G., & Baker, C. I. (2021). Resolving visual motion through perceptual gaps. Trends in cognitive sciences, 25(11), 978-991. https://doi.org/10.1016/j.tics.2021.07.01 [Google Scholar] [Crossref]

23. Summerfield, C., & de Lange, F. P. (2014). Expectation in perceptual decision making: Neural and computational mechanisms. Nature Reviews Neuroscience, 15(11), 745-756. https://doi.org/10.1038/nrn3838 [Google Scholar] [Crossref]

24. Friston, K. Does predictive coding have a future? Nat Neurosci 21, 1019-1021 (2018). https://doi.org/10.1038/s41593-018-0200-7 [Google Scholar] [Crossref]

25. Coco, M. I. (2022). Eye-tracking: Measurements and applications. In S. Della Sala (Ed.), Encyclopedia of behavioral neuroscience (2nd ed., pp. 204-214). Elsevier. https://doi.org/10.1016/B978-0-12-819641-0.00158-4 [Google Scholar] [Crossref]

26. Spillmann, L., & Dresp, B. (1995). Phenomena of illusory form: Can we bridge the gap between levels of explanation? Perception, 24(11), 1333-1364. https://doi.org/10.1068/p241333 [Google Scholar] [Crossref]

27. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415-434. https://doi.org/10.1016/j.neuron.2012.01.010 [Google Scholar] [Crossref]

28. Warbrick T. (2022). Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? Sensors (Basel, Switzerland), 22(6), 2262. https://doi.org/10.3390/s22062262 [Google Scholar] [Crossref]

29. Shan, Y., & Li, L. (2021). Book Review: The Neurocognition of Translation and Interpreting. Frontiers in Psychology, 12, Article 715226. https://doi.org/10.3389/fpsyg.2021.715226 [Google Scholar] [Crossref]

30. Wu, J., Lyu, X., Wang, Y., Liu, T., Zhao, S., & Xue, L. (2025). Combining Design Neurocognition Technologies and Neural Networks to Evaluate and Predict New Product Designs: A Multimodal Human-Computer Interaction Study. Electronics, 14(6), 1128. https://doi.org/10.3390/electronics14061128 [Google Scholar] [Crossref]

31. Shopin, D. (2025). Subjectica: A Neurophenomenological Framework for Lateralized Embodied Cognitive Stance. Preprints. https://doi.org/10.20944/preprints202512.2125.v1 [Google Scholar] [Crossref]

32. Libon, D. J., Swenson, R., Langford, D. T., Cosentino, S., Price, C. C., Lamar, M., Emrani, S., Au, R., Andersen, S., Chen, M. H., Ashendorf, L., & Thompson, L. (2025). Precision neurocognition: An emerging diagnostic paradigm leveraging digital cognitive assessment technology. Journal of Alzheimer's disease: JAD, 108(1_suppl), S159-S169. https://doi.org/10.1177/13872877251325725 [Google Scholar] [Crossref]

33. Chen, S., Pan, W., & Hu, C. (2025). Cognitive decision neural networks based on evidence accumulation framework. Advances in Psychological Science. https://doi.org/10.3724/SP.J.1042.2025.2043 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles