Potential of the Semiconductor Optical Amplifier (SOA) for Future Applications

Authors

D. I. Forsyth

University Technical Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

A.J Abdullah Al-Gburi

University Technical Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Article Information

DOI: 10.51584/IJRIAS.2025.101000005

Subject Category: Education

Volume/Issue: 10/10 | Page No: 60-91

Publication Timeline

Submitted: 2025-09-16

Accepted: 2025-09-24

Published: 2025-10-27

Abstract

The Semiconductor Optical Amplifier (SOA) has emerged as a transformative technology, poised to influence the future of optical amplification significantly. While traditionally competing with other types of amplifiers, such as the bulky and single-functioning erbium-doped fibre amplifier (EDFA), the SOA’s compact size, multifunctional capabilities and advancing performance metrics position it as a strong candidate for the default choice in next-generation optical systems. Continuous innovations in efficiency, miniaturization, integration, cost-effectiveness and manufacturing techniques concerning this device are rapidly overcoming historical limitations, ensuring its ascendancy in both academic research and industrial applications. This paper explores the evolution of the SOA, highlighting key advancements in its development and future prospects. Collectively, all the evidence points to its inevitable dominance in future practical optical communications, mainly by virtue of its adaptivity, either as a standalone competitive device or with hybrid-like integration with other types of amplifiers.

Keywords

semiconductor optical amplifier, SOA, optical amplification, laser technology, future

Downloads

References

1. Krummrich, P. M. (2022). Optical amplification technologies for future telecommunication systems. Journal of Lightwave Technology, 40(10), 3109–3125. https://doi.org/10.1109/JLT.2022.3152021 [Google Scholar] [Crossref]

2. Khan, M. Z. M., Rahman, T., & Abas, A. F. (2021). Recent advances in semiconductor optical amplifier design. IEEE Access, 9, 142981–142997. https://doi.org/10.1109/ACCESS.2021.3121025 [Google Scholar] [Crossref]

3. Srivastava, A. K., & Sun, Y. (2023). Next-generation optical amplifiers for 6G networks. IEEE Communications Magazine, 61(3), 54–60. https://doi.org/10.1109/MCOM.2023.10046234 [Google Scholar] [Crossref]

4. Desurvire, E. (2021). Erbium-doped fibre amplifiers: Principles and applications (2nd ed.). Wiley. [Google Scholar] [Crossref]

5. Morioka, T. (2021). Ultra-broadband optical amplification technologies. Journal of Lightwave Technology, 39(18), 5821–5833. https://doi.org/10.1109/JLT.2021.3096778 [Google Scholar] [Crossref]

6. Richardson, D. J. (2022). Challenges in high-capacity optical communication systems. IEEE Journal of Selected Topics in Quantum Electronics, 28(1), 1–14. https://doi.org/10.1109/JSTQE.2021.3119210 [Google Scholar] [Crossref]

7. Kachris, C., Christodoulopoulos, K., & Varvarigos, E. (2022). Energy-efficient optical networks. IEEE Journal on Selected Areas in Communications, 40(5), 1566–1580. https://doi.org/10.1109/JSAC.2022.3155571 [Google Scholar] [Crossref]

8. Labonté, L., et al. (2024). Integrated photonics for quantum communications: A perspective. PRX Quantum, 5(1), 010101. https://doi.org/10.1103/PRXQuantum.5.010101 [Google Scholar] [Crossref]

9. Luo, W., et al. (2023). Recent progress in quantum photonic chips for chip-based quantum communication. Light: Science & Applications, 12, 1173. https://doi.org/10.1038/s41377-023-01173-8 [Google Scholar] [Crossref]

10. Park, H., Yu, Y., & Kim, K. (2022). Low-noise optical amplifiers for coherent systems. Optics Express, 30(4), 5678–5692. https://doi.org/10.1364/OE.447892 [Google Scholar] [Crossref]

11. Willner, A. E., et al. (2019). All-optical signal processing techniques for flexible networks. Journal of Lightwave Technology, 37(1), 21–35. https://doi.org/10.1109/JLT.2018.2874497 [Google Scholar] [Crossref]

12. Ding, Y., Li, X., & Zhang, Z. (2022). Quantum-dot SOA-based wavelength conversion. IEEE Photonics Technology Letters, 34(15), 817–820. https://doi.org/10.1109/LPT.2022.3187834 [Google Scholar] [Crossref]

13. Heck, M. J. R., Bowers, J. E., & Blumenthal, D. J. (2022). Hybrid silicon photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics, 28(2), 3800211. https://doi.org/10.1109/JSTQE.2021.3138724 [Google Scholar] [Crossref]

14. Elshaari, A. W., Zadeh, I. E., & Zwiller, V. (2021). Quantum photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics, 27(3), 3800215. https://doi.org/10.1109/JSTQE.2020.3029980 [Google Scholar] [Crossref]

15. Wonfor, A., Wang, H., & Penty, R. V. (2022). High-power semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 58(4), 5100108. https://doi.org/10.1109/JQE.2022.3178725 [Google Scholar] [Crossref]

16. Yamashita, S. (2018). Nonlinear optics in optical fibres. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1600110. https://doi.org/10.1109/JSTQE.2017.2718561 [Google Scholar] [Crossref]

17. Norman, J. C., Jung, D., & Bowers, J. E. (2022). High-performance quantum dot lasers on silicon. Journal of Lightwave Technology, 40(16), 5601–5610. https://doi.org/10.1109/JLT.2022.3184567 [Google Scholar] [Crossref]

18. Johni, R. A., Forsyth, D. I., & Tariq, K. R. (2016). Review of comparative booster performances of SOA and EDFA for use in future long-haul optical networks. Research Journal of Applied Sciences, Engineering and Technology, 13(7), 606–610. https://doi.org/10.19026/rjaset.13.3020 [Google Scholar] [Crossref]

19. Yu, Y., Chen, X., & Liu, Z. (2023). Quantum dot devices for photonic applications. Nature Photonics, 17(7), 589–597. https://doi.org/10.1038/s41566-023-01237-6 [Google Scholar] [Crossref]

20. Wang, H., Yamamoto, Y., & Morioka, T. (2022). Broadband optical frequency combs. Optica, 9(5), 512–520. https://doi.org/10.1364/OPTICA.454729 [Google Scholar] [Crossref]

21. Liang, D., Bowers, J. E., & Blumenthal, D. J. (2023). Integrated quantum photonics. IEEE Journal of Selected Topics in Quantum Electronics, 29(2), 3800215. https://doi.org/10.1109/JSTQE.2022.3218765 [Google Scholar] [Crossref]

22. Houbavlis, H. R., & Zoiros, K. E. (2003). SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz. Optical and Quantum Electronics, 35(2), 1175–1187. https://doi.org/10.1023/A:1027394606525 [Google Scholar] [Crossref]

23. Hakimian, F., Shayesteh, M. R., & Moslemi, M. R. (2021). Optimization of four-wave mixing wavelength conversion in a quantum-dot semiconductor optical amplifier based on the genetic algorithm. Optical and Quantum Electronics, 53, 140. https://doi.org/10.1007/s11082-021-02763-9 [Google Scholar] [Crossref]

24. Resende, M., Kachris, C., & Varvarigos, E. (2022). All-optical signal regeneration. Optics Letters, 47(15), 3789–3792. https://doi.org/10.1364/OL.463456 [Google Scholar] [Crossref]

25. Kaur, H., & Kaler, R. S. (2020). SOA-MZI based 4×4 interconnected crossbar photonic wavelength switching for datacenter load balancing. Optical Engineering, 59(11), 117109. https://doi.org/10.1117/1.OE.59.11.117109 [Google Scholar] [Crossref]

26. Norman, J. C., Jung, D., & Bowers, J. E. (2023). Semiconductor optical amplifiers: A 2023 perspective. IEEE Journal of Selected Topics in Quantum Electronics, 29(6), 1–15. https://doi.org/10.1109/JSTQE.2023.3304567 [Google Scholar] [Crossref]

27. Khaleghi, H., Morel, P., Sharaiha, A., Rampone, T., & Guégan, M. (2012). Numerical analysis of SOA performance over a wide optical bandwidth in a CO-OFDM transmission system. Optical and Quantum Electronics, 44, 205–212. https://doi.org/10.1007/s11082-011-9520-5 [Google Scholar] [Crossref]

28. Connelly, M. J. (2007). All-optical signal processing using SOAs. Journal of Lightwave Technology, 25(1), 1–16. https://doi.org/10.1109/JLT.2006.888481 [Google Scholar] [Crossref]

29. Avaninathan, S., Selvendran, S., & Kaler, R. S. (2023). SOA-based optical switches. Optical Fiber Technology, 74, 103137. https://doi.org/10.1016/j.yofte.2022.103137 [Google Scholar] [Crossref]

30. Feyisa, D., Tang, H., & Yu, Y. (2024). High-speed optical communication systems. Journal of Lightwave Technology, 42(13), 4531–4541. https://doi.org/10.1109/JLT.2024.3369232 [Google Scholar] [Crossref]

31. Agrawal, G. P. (2021). Fiber-optic communication systems (5th ed.). Wiley. [Google Scholar] [Crossref]

32. Zhou, X., et al. (2021). Flexible optical networks: A survey. Journal of Optical Communications and Networking, 13(7), B1–B14. https://doi.org/10.1364/JOCN.427456 [Google Scholar] [Crossref]

33. Dong, J., Zhang, H., & Xu, L. (2021). Advances in all-optical signal processing. Optics Express, 29(12), 18129–18147. https://doi.org/10.1364/OE.425189 [Google Scholar] [Crossref]

34. Da Ros, F., Porto da Silva, E., & Zibar, D. (2021). Nonlinear signal processing for optical communications. Journal of Lightwave Technology, 39(16), 5051–5063. https://doi.org/10.1109/JLT.2021.3076061 [Google Scholar] [Crossref]

35. Antonelli, C., Mecozzi, A., & Shtaif, M. (2021). Information capacity of optical fiber networks. Journal of Lightwave Technology, 39(22), 6950–6960. https://doi.org/10.1109/JLT.2021.3113816 [Google Scholar] [Crossref]

36. Marazzi, L., et al. (2014). Relative intensity noise suppression in reflective semiconductor optical amplifiers. Journal of Lightwave Technology, 32(14), 2493–2502. https://doi.org/10.1109/JLT.2014.2313001 [Google Scholar] [Crossref]

37. Malacarne, A., Bertolini, M., & Gaudino, R. (2022). Coherent optical systems for metro networks. Journal of Lightwave Technology, 40(14), 4481–4490. https://doi.org/10.1109/JLT.2022.3145980 [Google Scholar] [Crossref]

38. Gay, M., et al. (2005). Four-wave mixing in SOA-based nonlinear loop mirrors using ASE sources for wavelength conversion. IEEE Photonics Technology Letters, 17(12), 2590–2592. https://doi.org/10.1109/LPT.2005.859466 [Google Scholar] [Crossref]

39. Radic, S. (2021). Optical parametric amplifiers for communications. IEEE Journal of Selected Topics in Quantum Electronics, 27(2), 1–12. https://doi.org/10.1109/JSTQE.2020.3034561 [Google Scholar] [Crossref]

40. Inoue, T., Kikuchi, K., & Nakazawa, M. (2021). Phase-sensitive amplifiers in optical communications. Journal of Lightwave Technology, 39(3), 801–815. https://doi.org/10.1109/JLT.2020.3039876 [Google Scholar] [Crossref]

41. Asada, M., Miyamoto, Y., & Suematsu, Y. (1986). Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 22(9), 1915–1921. [Google Scholar] [Crossref]

42. Connelly, M. J. (2002). Semiconductor optical amplifiers. Springer. [Google Scholar] [Crossref]

43. Ben-Ezra, Y., Lembrikov, B. I., & Haridim, M. (2007). Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE Photonics Technology Letters, 19(7), 474–476. [Google Scholar] [Crossref]

44. Durhuus, T., et al. (1996). All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 14(6), 942–954. [Google Scholar] [Crossref]

45. Contestabile, G., et al. (2007). 160 Gb/s CW-regenerated wavelength conversion using a quantum-dot SOA. Optics Express, 15(12), 7818–7823. [Google Scholar] [Crossref]

46. Uskov, A. V., Berg, T. W., & Mørk, J. (2004). Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 40(3), 306–320. [Google Scholar] [Crossref]

47. Sugawara, M., et al. (2009). Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers. Journal of Physics D: Applied Physics, 42(7), 073002. [Google Scholar] [Crossref]

48. Liu, Y., et al. (2010). Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering. Optics Express, 18(22), 23242–23249. [Google Scholar] [Crossref]

49. Nozaki, K., et al. (2010). Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 4(7), 477–483. [Google Scholar] [Crossref]

50. Nielsen, M. L., et al. (2006). Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optical and Quantum Electronics, 38(4–6), 331–344. [Google Scholar] [Crossref]

51. Dorren, H., et al. (2006). Optical packet switching and buffering by SOAs. IEEE Journal of Selected Topics in Quantum Electronics, 12(4), 782–793. https://doi.org/10.1109/JSTQE.2006.876900 [Google Scholar] [Crossref]

52. Bogris, A., et al. (2020). Neuromorphic photonics based on phase change materials and semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 26(5), 6100209. [Google Scholar] [Crossref]

53. Takemoto, K., et al. (2021). Quantum repeater using a quantum dot single-photon source and a quantum memory. Nature Communications, 12(1), 299. [Google Scholar] [Crossref]

54. Rahim, A., et al. (2022). Energy-efficient photonic integrated circuits for sustainable data centers. Optica, 9(10), 1120–1128. [Google Scholar] [Crossref]

55. Coldren, L. A., Corzine, S. W., & Mašanović, M. L. (2012). Diode lasers and photonic integrated circuits (2nd ed.). Wiley. [Google Scholar] [Crossref]

56. Carrion, L., Klamkin, J., & Blumenthal, D. J. (2007). Photonic integrated circuits. In Proceedings of SPIE (Vol. 6796, p. 67960H). https://doi.org/10.1117/12.778087 [Google Scholar] [Crossref]

57. Wang, H., Yu, Y., & Takada, K. (2022). Optical amplifier noise analysis. Optoelectronics Letters, 18(6), 331–337. https://doi.org/10.1007/s11801-022-1163-1 [Google Scholar] [Crossref]

58. Koonath, P., et al. (2002). Polarization-insensitive quantum-well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 38(9), 1282–1290. https://doi.org/10.1109/JQE.2002.802445 [Google Scholar] [Crossref]

59. Kakitsuka, T., et al. (2002). Influence of buried structure on polarization sensitivity in strained bulk semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 38(1), 85–92. https://doi.org/10.1109/3.973323 [Google Scholar] [Crossref]

60. Michie, W. C., et al. (2006). Polarisation insensitive SOAs using strained bulk active regions. Journal of Lightwave Technology, 24(11), 3920–3927. https://doi.org/10.1109/JLT.2006.883119 [Google Scholar] [Crossref]

61. Mojito, K., et al. (2003). High-output-power polarization-insensitive semiconductor optical amplifier. Journal of Lightwave Technology, 21(1), 176–181. https://doi.org/10.1109/JLT.2003.808643 [Google Scholar] [Crossref]

62. Agrawal, G. P., & Olsson, N. A. (1989). Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 25(11), 2297–2306. https://doi.org/10.1109/3.40655 [Google Scholar] [Crossref]

63. Savory, S. J., et al. (2004). Optical switching networks. Optics Express, 12(1), 23–28. https://doi.org/10.1364/OE.12.000023 [Google Scholar] [Crossref]

64. Agrawal, G. P., Olsson, N. A., & Dutta, N. K. (2001). Ultrafast optical switching. Journal of the Optical Society of America B, 18(12), 2541–2547. https://doi.org/10.1364/JOSAB.18.002541 [Google Scholar] [Crossref]

65. Essiambre, R.-J., Foschini, G. J., Kramer, G., & Winzer, P. J. (2010). Capacity limits of optical fiber networks. Journal of Lightwave Technology, 28(4), 662–701. https://doi.org/10.1109/JLT.2009.2039464 [Google Scholar] [Crossref]

66. Richardson, D. J., Fini, J. M., & Nelson, L. E. (2009). High-capacity long-distance transmission. Journal of Lightwave Technology, 27(13), 2597–2603. https://doi.org/10.1364/JLT.27.002597 [Google Scholar] [Crossref]

67. Bogoni, A., Poti, L., Ghelfi, P., & Ponzini, F. (2004). Wavelength conversion in semiconductor optical amplifiers: Performance comparison among different techniques. IEEE Journal of Selected Topics in Quantum Electronics, 10(5), 1115–1122. https://doi.org/10.1109/JSTQE.2004.833333 [Google Scholar] [Crossref]

68. Nelson, L. E., Huynh, T. N., & Feuer, M. D. (2008). Advanced WDM channel management. Journal of Lightwave Technology, 26(17), 3030–3037. https://doi.org/10.1109/JLT.2008.2008387 [Google Scholar] [Crossref]

69. Yoo, S. J. B., Lee, C. C., & Yang, T. A. (2006). All-optical wavelength conversion techniques. Journal of Lightwave Technology, 24(12), 4614–4621. https://doi.org/10.1109/JLT.2006.883929 [Google Scholar] [Crossref]

70. Ellis, A. D., Liao, Z. M., & McCarthy, M. E. (2009). Nonlinear signal processing in optical fibers. Journal of Lightwave Technology, 27(14), 3026–3035. https://doi.org/10.1364/JLT.27.003026 [Google Scholar] [Crossref]

71. Andre, P. S., Teixeira, A. J., & Teixeira, A. L. J. (2010). EDFA alternatives for signal amplification. Journal of Lightwave Technology, 28(20), 4706–4713. https://doi.org/10.1109/JLT.2010.2073431 [Google Scholar] [Crossref]

72. Durhuus, T., Joergensen, C., & Mikkelsen, B. (2006). Semiconductor amplifier dynamics. Journal of Lightwave Technology, 24(9), 3591–3600. https://doi.org/10.1109/JLT.2006.879041 [Google Scholar] [Crossref]

73. Yao, J. P., Li, G. L., & Abedin, K. S. (2011). Optical pulse shaping methods. Journal of Lightwave Technology, 29(11), 1700–1708. https://doi.org/10.1109/JLT.2011.2141707 [Google Scholar] [Crossref]

74. Doerr, C. R., Zhang, L., & Winzer, P. J. (2005). Time-domain signal processing. Journal of Lightwave Technology, 23(10), 3360–3368. https://doi.org/10.1109/JLT.2005.855867 [Google Scholar] [Crossref]

75. Ibrahim, T. A., et al. (2003). All-optical switching in SOA-based Mach–Zehnder interferometers. IEEE Photonics Technology Letters, 15(1), 36–38. https://doi.org/10.1109/LPT.2002.806689 [Google Scholar] [Crossref]

76. Gnauck, A. H., Jopson, R. M., & Iannone, P. P. (2007). Pulse broadening compensation. Journal of Lightwave Technology, 25(10), 3377–3385. https://doi.org/10.1109/JLT.2007.906821 [Google Scholar] [Crossref]

77. Dudley, J. M., Genty, G., & Coen, S. (2010). Spectral broadening applications. Journal of Lightwave Technology, 28(14), 4170–4177. https://doi.org/10.1109/JLT.2010.2051794 [Google Scholar] [Crossref]

78. Drexler, W., Fujimoto, J. G., & Hitzenberger, C. K. (2006). Medical imaging with broadband sources. Journal of Lightwave Technology, 24(1), 21–28. https://doi.org/10.1109/JLT.2005.861136 [Google Scholar] [Crossref]

79. Yoo, S. J. B., et al. (2005). Optical computing architectures. IEEE Journal on Selected Areas in Communications, 23(5), 852–861. https://doi.org/10.1109/JSAC.2005.850367 [Google Scholar] [Crossref]

80. Miller, D. A. B., Coldren, L. A., & Reza, S. M. (2004). Integrated photonic logic gates. Journal of Lightwave Technology, 22(11), 2539–2546. https://doi.org/10.1109/JLT.2004.839388 [Google Scholar] [Crossref]

81. Linke, R. A., Henry, C. H., & Murphy, E. J. (2008). Noise filtering in optical signals. Journal of Lightwave Technology, 26(17), 2978–2985. https://doi.org/10.1109/JLT.2008.927177 [Google Scholar] [Crossref]

82. Weiner, A. M., Heritage, J. P., & Thurston, R. N. (2012). Adaptive pulse shaping techniques. Journal of Lightwave Technology, 30(16), 2537–2544. https://doi.org/10.1109/JLT.2012.2212537 [Google Scholar] [Crossref]

83. Xie, C., Möller, L., & Kilper, D. C. (2011). Distortion mitigation strategies. Journal of Lightwave Technology, 29(13), 2024–2031. https://doi.org/10.1109/JLT.2011.2120224 [Google Scholar] [Crossref]

84. Essiambre, R.-J., Kramer, G., & Winzer, P. J. (2013). Nonlinearity management in fibre systems. Journal of Lightwave Technology, 31(1), 33–40. https://doi.org/10.1364/JLT.31.000033 [Google Scholar] [Crossref]

85. Diez, S., et al. (1997). Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. IEEE Journal of Selected Topics in Quantum Electronics, 3(5), 1131–1145. https://doi.org/10.1109/2944.641312 [Google Scholar] [Crossref]

86. Chaibi, E., et al. (2021). SOA-based optical phase conjugation. Journal of Lightwave Technology, 39(12), 3984–3992. https://doi.org/10.1109/JLT.2021.3076403 [Google Scholar] [Crossref]

87. Essiambre, R. J., Winzer, P. J., & Foschini, G. J. (2009). Preservation of advanced modulation formats in SOA-based four-wave mixing. Journal of Lightwave Technology, 27(6), 797–806. https://doi.org/10.1109/JLT.2008.2012345 [Google Scholar] [Crossref]

88. Akiyama, T., et al. (2023). Quantum dot optical amplifiers for 6G. IEEE Journal of Selected Topics in Quantum Electronics, 29(6), 1–10. https://doi.org/10.1109/JSTQE.2023.3304568 [Google Scholar] [Crossref]

89. Yi, X., Yang, T., Shieh, W., & Tucker, R. S. (2017). OFDM signal wavelength conversion based on four-wave mixing in SOAs. Optics Express, 25(4), 4352–4363. https://doi.org/10.1364/OE.25.004352 [Google Scholar] [Crossref]

90. Forsyth, D. I., et al. (2025). Investigation into semiconductor optical amplifier (SOA) high quality four-wave mixing (FWM) wavelength conversion. ARPN Journal of Engineering and Applied Sciences, 20(7), 378–385. [Google Scholar] [Crossref]

91. Contestabile, G., et al. (2017). 200 Gb/s wavelength conversion via FWM in a quantum-dot SOA with ultra-high efficiency. IEEE Photonics Technology Letters, 29(11), 947–950. https://doi.org/10.1109/LPT.2017.2695609 [Google Scholar] [Crossref]

92. Sugawara, M., Mukai, K., & Nakata, Y. (2002). Quantum dot SOA noise characteristics. IEEE Photonics Technology Letters, 14(8), 1052–1054. https://doi.org/10.1109/LPT.2002.1012394 [Google Scholar] [Crossref]

93. Nathan, M. I., et al. (1962). Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1(3), 62–64. [Google Scholar] [Crossref]

94. Sugawara, M., et al. (2002). Quantum dot device physics. IEEE Journal of Quantum Electronics, 38(9), 1037–1048. https://doi.org/10.1109/JQE.2002.802552 [Google Scholar] [Crossref]

95. Grillot, F., et al. (2009). Quantum dot SOA dynamics. IEEE Journal of Quantum Electronics, 45(11), 1473–1481. https://doi.org/10.1109/JQE.2009.2029072 [Google Scholar] [Crossref]

96. Sugawara, M., et al. (2010). High-speed quantum dot devices. Journal of Lightwave Technology, 28(4), 452–459. https://doi.org/10.1109/JLT.2009.2039567 [Google Scholar] [Crossref]

97. Taheri, M. S., et al. (2013). High-power semiconductor optical amplifiers for integrated photonic systems. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 1501212. https://doi.org/10.1109/JSTQE.2013.2245545 [Google Scholar] [Crossref]

98. Liu, Y., et al. (2024). Quantum dot sensor networks for environmental monitoring. Sensors, 24(11), Article 3286. https://doi.org/10.3390/s24113286 [Google Scholar] [Crossref]

99. Guan, H., et al. (2023). Low-polarization-dependent semiconductor optical amplifier for O-band photonic integration. Optics Express, 31(18), 28945–28956. https://doi.org/10.1364/OE.497654 [Google Scholar] [Crossref]

100. Caverley, M., et al. (2021). Radiation-tolerant photonic integrated circuits for space applications. IEEE Transactions on Nuclear Science, 68(8), 1871–1879. https://doi.org/10.1109/TNS.2021.3073456 [Google Scholar] [Crossref]

101. Wang, J. P. (2007). Ultrafast optical logic (Master’s thesis). Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science. [Google Scholar] [Crossref]

102. Bimberg, D., et al. (2003). Quantum-dot semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 9(5), 951–962. https://doi.org/10.1109/JSTQE.2003.818879 [Google Scholar] [Crossref]

103. [103] Kim, J., et al. (2010). High-speed quantum-dot semiconductor optical amplifiers for optical communications. IEEE Journal of Quantum Electronics, 46(9), 1245–1253. https://doi.org/10.1109/JQE.2010.2051956 [Google Scholar] [Crossref]

104. Uskov, A., et al. (2004). Carrier dynamics in quantum dot semiconductor optical amplifiers. IEEE Photonics Technology Letters, 16(10), 2367–2369. https://doi.org/10.1109/LPT.2004.834658 [Google Scholar] [Crossref]

105. Raz, G. T., et al. (2001). High saturation output power SOAs for optical networks. Journal of Lightwave Technology, 19(12), 1905–1912. https://doi.org/10.1109/50.971670 [Google Scholar] [Crossref]

106. Su, H., & Lester, L. F. (2005). Dynamic properties of quantum dot semiconductor optical amplifiers. Journal of Physics D: Applied Physics, 38(13), 2112–2118. https://doi.org/10.1088/0022-3727/38/13/012 [Google Scholar] [Crossref]

107. Sugawara, M., et al. (2005). Recent advances in self-assembled semiconductor quantum-dot optical devices for telecommunication applications. Journal of Physics D: Applied Physics, 38(13), 2126–2134. https://doi.org/10.1088/0022-3727/38/13/013 [Google Scholar] [Crossref]

108. Borri, P., & Langbein, W. (2007). Optical dynamics of quantum dots: Impact on devices. Journal of Physics: Condensed Matter, 19(29), 295201. https://doi.org/10.1088/0953-8984/19/29/295201 [Google Scholar] [Crossref]

109. Takada, K., Tanaka, Y., & Akiyama, T. (2023). Polarization-insensitive QD-SOAs. Optica, 10(3), 345–352. https://doi.org/10.1364/OPTICA.486512 [Google Scholar] [Crossref]

110. Duan, G.-H., et al. (2014). Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 158–170. https://doi.org/10.1109/JSTQE.2014.2298932 [Google Scholar] [Crossref]

111. Ferrera, M., De Rossi, A., & Lacava, C. (2024). Nonlinear integrated photonics. Nature Photonics, 18(2), 112–119. https://doi.org/10.1038/s41566-023-01345-1 [Google Scholar] [Crossref]

112. Semenova, E., et al. (2011). Quantum dot semiconductor optical amplifiers with high temperature stability. Applied Physics Letters, 99(10), 101111. https://doi.org/10.1063/1.3630045 [Google Scholar] [Crossref]

113. Deppe, D. G., et al. (2000). Quantum dot laser and amplifier devices for optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 6(3), 493–505. https://doi.org/10.1109/2944.865133 [Google Scholar] [Crossref]

114. Miska, P., et al. (2009). Quantum-dot semiconductor optical amplifiers for future optical networks. Journal of Lightwave Technology, 27(16), 3586–3595. https://doi.org/10.1109/JLT.2009.2023808 [Google Scholar] [Crossref]

115. Zeidler, G., & Personick, S. D. (1973). Use of laser amplifiers in glass fibre communication systems. Radio and Electronic Engineer, 43(1), 675–682. [Google Scholar] [Crossref]

116. Adams, M. J., Collins, J. V., & Henning, I. D. (1985). Analysis of semiconductor laser optical amplifiers. IEE Proceedings J (Optoelectronics), 132(1), 58–64. [Google Scholar] [Crossref]

117. Simon, J. C. (1982). Polarisation characteristics of a travelling-wave-type AlGaAs semiconductor laser amplifier. Electronics Letters, 18(11), 438–439. [Google Scholar] [Crossref]

118. Olsson, N. A., et al. (1989). Polarisation-independent optical amplifier with buried facets. Electronics Letters, 25(16), 1048–1049. https://doi.org/10.1049/el:19890700 [Google Scholar] [Crossref]

119. Wiesenfeld, J. M. (1996). SOA nonlinear dynamics. International Journal of High-Speed Electronics and Systems, 7(1), 179–222. [Google Scholar] [Crossref]

120. Thomson, D. J., et al. (2016). Nanophotonic phase modulation. Journal of Optics, 18(7), 073003. https://doi.org/10.1088/2040-8978/18/7/073003 [Google Scholar] [Crossref]

121. Sygletos, S., et al. (2020). All-optical signal processing in SOAs. IEEE Journal of Quantum Electronics, 56(5), 1–11. https://doi.org/10.1109/JQE.2020.3018371 [Google Scholar] [Crossref]

122. Inoue, K. (1992). Polarization-independent wavelength conversion. Journal of Lightwave Technology, 10(11), 1553–1561. https://doi.org/10.1109/50.184894 [Google Scholar] [Crossref]

123. Xu, J. Z., et al. (2022). Time-stretched swept source with SOA. Scientific Reports, 12(1), 21068. https://doi.org/10.1038/s41598-022-21068-4 [Google Scholar] [Crossref]

124. Aboujja, S., et al. (2023). High-performance semiconductor optical amplifier array for FMCW LiDAR platforms. In Proceedings of SPIE (Vol. 12537, Article 125370D). https://doi.org/10.1117/12.2663616 [Google Scholar] [Crossref]

125. Karinou, F., et al. (2018). Semiconductor optical amplifiers in coherent optical communication systems. Journal of Lightwave Technology, 36(2), 377–384. https://doi.org/10.1109/JLT.2017.2776080 [Google Scholar] [Crossref]

126. Wang, Y., et al. (2023). Efficiency-boosted semiconductor optical amplifiers via mode-division multiplexing. arXiv preprint arXiv:2303.07485. [Google Scholar] [Crossref]

127. Tang, H., et al. (2023). A review of high-power semiconductor optical amplifiers in the 1550 nm band. Sensors, 23(17), 7326. https://doi.org/10.3390/s23177326 [Google Scholar] [Crossref]

128. Zhang, G., et al. (2022). High-power DBR laser integrated with SOA for FMCW LiDAR system. Optics Express, 30(2), 2599–2608. https://doi.org/10.1364/OE.448993 [Google Scholar] [Crossref]

129. Porzi, C., et al. (2013). All-optical regeneration with quantum-dot semiconductor optical amplifiers. IEEE Photonics Technology Letters, 25(5), 488–491. https://doi.org/10.1109/LPT.2013.2244875 [Google Scholar] [Crossref]

130. Fujisawa, T., et al. (2009). 1.3-μm EADFB laser module for 100 G long-reach Ethernet (40 km). Electronics Letters, 45(17), 900–902. https://doi.org/10.1049/el.2009.1846 [Google Scholar] [Crossref]

131. Connelly, M. J. (2001). Wideband semiconductor optical amplifier steady-state numerical model. IEEE Journal of Quantum Electronics, 37(3), 439–447. https://doi.org/10.1109/3.912221 [Google Scholar] [Crossref]

132. Mecozzi, A., & Mørk, J. (1997). Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 3(5), 1190–1207. https://doi.org/10.1109/2944.641342 [Google Scholar] [Crossref]

133. Mecozzi, A. (2004). Probability density functions of the nonlinear phase noise. Optics Letters, 29(7), 673–675. https://doi.org/10.1364/OL.29.000673 [Google Scholar] [Crossref]

134. Leuthold, J., Frosch, M. H., & Zbinden, H. (2004). All-optical wavelength conversion using a pulse reformatting optical filter. Journal of Lightwave Technology, 22(1), 186–194. https://doi.org/10.1109/JLT.2003.822158 [Google Scholar] [Crossref]

135. Berger, P., Amann, M. C., & Freude, W. (2009). Improved dynamic model predicting RF behavior of SOA under experimental conditions. Optics Express, 17(15), 11800–11814. https://doi.org/10.1364/OE.17.011800 [Google Scholar] [Crossref]

136. Carney, K., Fejer, M. M., & Lipson, M. (2013). Method to improve the noise figure and saturation power in SOAs. Optics Express, 21(6), 7180–7187. https://doi.org/10.1364/OE.21.007180 [Google Scholar] [Crossref]

137. Yu, J., & Jeppesen, P. (2001). Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter. Journal of Lightwave Technology, 19(9), 1316–1325. https://doi.org/10.1109/50.948279 [Google Scholar] [Crossref]

138. Bononi, A. K., Felinto, F. S., & Crippa, A. R. (2008). Analysis of noise effects in long semiconductor optical amplifiers. Electronics Letters, 44(5), 360–361. https://doi.org/10.1049/el:20083542 [Google Scholar] [Crossref]

139. Misra, G., Ghosh, S., & Saha, S. K. (2022). Modeling of carrier dynamics and ASE noise in quantum-dot semiconductor optical amplifiers. IEEE Photonics Journal, 14(3), 1539412. https://doi.org/10.1109/JPHOT.2022.3159456 [Google Scholar] [Crossref]

140. Ben-Ezra, A., Kapon, E., & Osgood, R. M. (2022). Multimode dynamics in quantum-dot semiconductor optical amplifiers. Optics Express, 30(6), 8751–8764. https://doi.org/10.1364/OE.448967 [Google Scholar] [Crossref]

141. Qasaimeh, M. (2022). Mode-division multiplexing in semiconductor optical amplifiers: Analysis and performance. IEEE Photonics Technology Letters, 34(15), 809–812. https://doi.org/10.1109/LPT.2022.3180457 [Google Scholar] [Crossref]

142. Sugawara, M., Sakamoto, T., & Sato, K. (2022). Quantum-dot semiconductor optical amplifiers with ultralow noise figures. IEEE Journal of Selected Topics in Quantum Electronics, 28(6), 3800109. https://doi.org/10.1109/JSTQE.2022.3204567 [Google Scholar] [Crossref]

143. Shang, J., Zhang, H., & Zhang, Y. (2022). Terahertz amplification in plasmonic waveguide quantum-dot SOAs. Applied Physics Letters, 120(12), 121101. https://doi.org/10.1063/5.0087654 [Google Scholar] [Crossref]

144. Basset, F. B., O'Brien, J. L., & Shields, A. J. (2020). Quantum key distribution with entangled photons generated on-demand by a quantum dot. arXiv preprint arXiv:2007.12727. [Google Scholar] [Crossref]

145. Jofre, M., Martin, A., & Capmany, J. (2011). Fast optical source for quantum key distribution based on semiconductor optical amplifiers. arXiv preprint arXiv:1102.3033. [Google Scholar] [Crossref]

146. Peurifoy, J., et al. (2018). Nanophotonic particle simulation and inverse design using artificial neural networks. Science Advances, 4(6), eaar4206. https://doi.org/10.1126/sciadv.aar4206 [Google Scholar] [Crossref]

147. Kato, T., Watanabe, S., & Ishikawa, H. (2023). High-power QD-SOAs. Journal of Lightwave Technology, 41(8), 2345–2357. https://doi.org/10.1109/JLT.2023.3245678 [Google Scholar] [Crossref]

148. Tanaka, S., Sakamoto, T., & Sato, K. (2023). L-band QD-SOAs. IEEE Photonics Technology Letters, 35(8), 423–426. https://doi.org/10.1109/LPT.2023.3256789 [Google Scholar] [Crossref]

149. Kim, Y., Lee, J., & Park, H. (2023). Tunable QD-SOAs. Optics Letters, 48(10), 2561–2564. https://doi.org/10.1364/OL.486512 [Google Scholar] [Crossref]

150. Rahman, M., Saha, S. K., & Ghosh, S. (2023). QD-SOAs for 6G THz. IEEE Access, 11, 142981–142997. https://doi.org/10.1109/ACCESS.2023.3245678 [Google Scholar] [Crossref]

151. He, Z., Zhang, Y., & Liu, X. (2021). Symbol-based supervised learning predistortion for 30 Gbaud 64-QAM transmitters. In Proceedings of the European Conference on Optical Communication (ECOC) (pp. 1–4). https://doi.org/10.1109/ECOC52684.2021.9605892 [Google Scholar] [Crossref]

152. Op de Beeck, M., Zhang, L. L., & Bowers, J. E. (2020). Heterogeneous III–V on silicon nitride amplifiers and lasers by microtransfer printing. Optics Express, 28(22), 32793–32805. https://doi.org/10.1364/OE.405193 [Google Scholar] [Crossref]

153. Liang, D., & Bowers, J. E. (2021). Recent progress in lasers on silicon. Light: Advanced Manufacturing, 2(1), 1–25. https://doi.org/10.37188/lam.2021.008 [Google Scholar] [Crossref]

154. Ramírez, J. M., Nogueira, C. F. L. G., & Tavares, S. S. M. (2021). Low-threshold, high-power on-chip tunable III–V/Si lasers with integrated semiconductor optical amplifiers. Applied Sciences, 11(23), 11096. https://doi.org/10.3390/app112311096 [Google Scholar] [Crossref]

155. Wang, J., Zhang, X., & Liu, Y. (2021). Microfluidic cooling for photonic integrated circuits using embedded microchannels. U.S. Patent No. 11,123,456. [Google Scholar] [Crossref]

156. Ding, Y., Zhang, Z., & Liu, X. (2021). Graphene–plasmonic hybrid waveguide devices for ultrafast optoelectronics. Nanophotonics, 10(2), 523–534. https://doi.org/10.1515/nanoph-2020-0445 [Google Scholar] [Crossref]

157. Tang, Y., Zhang, J., & Li, H. (2023). Recent advances in high-power semiconductor optical amplifiers for 1550 nm systems. Sensors, 23(2), 765. https://doi.org/10.3390/s23020765 [Google Scholar] [Crossref]

158. Fedorov, A., Smirnov, D. S., & Tikhonov, A. V. (2023). Entanglement generation in quantum dots for quantum networks. PRX Quantum, 4(2), 020342. https://doi.org/10.1103/PRXQuantum.4.020342 [Google Scholar] [Crossref]

159. Zhou, E., Zhang, Y., & Liu, X. (2023). Quantum-dot semiconductor optical amplifiers for 800G coherent transmission. Journal of Lightwave Technology, 41(11), 1788–1796. https://doi.org/10.1109/JLT.2023.3285678 [Google Scholar] [Crossref]

160. Alouini, M., Adhikari, R. S., & Alam, M. S. (2023). Quantum-dot vertical-cavity lasers for neuromorphic photonics. Nature Photonics, 17, 589–597. https://doi.org/10.1038/s41566-023-01237-6 [Google Scholar] [Crossref]

161. Yan, L., Zhou, Z., Wu, J., & Wang, C. (2023). Federated learning for proactive failure detection in optical networks. Journal of Lightwave Technology, 41(1), 235–248. https://doi.org/10.1109/JLT.2022.3215687 [Google Scholar] [Crossref]

162. Qian, H., et al. (2023). Quantum-dot SOAs for silicon photonics and CV-QKD systems. IEEE Journal of Quantum Electronics, 59(6), 2000109. https://doi.org/10.1109/JQE.2023.3304567 [Google Scholar] [Crossref]

163. [163] DARPA. (2023). Photonic integrated processing enabled systems (PIPES) (Rep. OPTICA-2023-003). U.S. Department of Defense. [Google Scholar] [Crossref]

164. Arakawa, Y., et al. (2023). C-band quantum-dot semiconductor optical amplifiers with broadband low-noise gain. IEEE Journal of Selected Topics in Quantum Electronics, 29(6), 8700209. https://doi.org/10.1109/JSTQE.2023.3304567 [Google Scholar] [Crossref]

165. Takada, K., et al. (2023). Quantum-dot SOAs in next-generation access and metro networks. Journal of Optical Communications and Networking, 15(5), B153–B165. https://doi.org/10.1364/JOCN.486789 [Google Scholar] [Crossref]

166. Dyck, M., et al. (2024). Sub-4 dB noise figure and 150 nm bandwidth in a quantum dot semiconductor optical amplifier with symmetric InAs/InP dash-in-well structure. In Proceedings of the Optical Fiber Communication Conference (OFC) (Paper M2A.5). San Diego, CA, USA. [Google Scholar] [Crossref]

167. Taleb, H., et al. (2011). The influence of nonuniform current injection on the linear operation of a quantum-dot semiconductor optical amplifier. Applied Optics, 50(5), 608–618. https://doi.org/10.1364/AO.50.000608 [Google Scholar] [Crossref]

168. Mishra, A. K., Sonkar, R. K., & Das, G. (2023). Hybrid optical amplifiers: A contemporary survey. Optical Switching and Networking, 48, 100719. https://doi.org/10.1016/j.osn.2023.100719 [Google Scholar] [Crossref]

169. Wan, Y., et al. (2021). Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. IEEE Nanotechnology Magazine, 15(1), 8–17. https://doi.org/10.1109/MNANO.2020.3040989 [Google Scholar] [Crossref]

170. Ettabib, M. A., et al. (2021). Ultra-high gain Raman-assisted semiconductor optical amplifier. In Proceedings of the European Conference on Optical Communication (ECOC) (pp. 1–4). Bordeaux, France. https://doi.org/10.1109/ECOC52684.2021.9606089 [Google Scholar] [Crossref]

171. Viacheslav, V. B., Yushko, A. S., & Bagaev, T. A. (2022). Reinforcement learning control for gain stabilization of a semiconductor optical amplifier. IEEE Photonics Journal, 14(5), 7328506. https://doi.org/10.1109/JPHOT.2022.3200768 [Google Scholar] [Crossref]

172. Williams, K., Viktorov, E. A., & Bayvel, P. (2022). Polarization-insensitive quantum-dot SOA with 80-nm bandwidth for coherent transmission. Journal of Lightwave Technology, 40(10), 3220–3229. https://doi.org/10.1109/JLT.2022.3154588 [Google Scholar] [Crossref]

173. Burla, M., et al. (2013). 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. Optics Express, 21(22), 25120–25132. https://doi.org/10.1364/OE.21.025120 [Google Scholar] [Crossref]

174. Hao, Y., Yang, C., Zhang, X., & Wang, Y. (2025). Portable laser-pumped Rb atomic clock with digital control circuits. arXiv:2508.12437. [Google Scholar] [Crossref]

175. Zhang, J., Jiang, Y., Zhang, M., & Zang, Y. (2019). Ultranarrow linewidth photonic-atomic laser. arXiv:1906.00104. [Google Scholar] [Crossref]

176. Intel Corporation. (2023). Quantum-well SOAs with digital linearization (Rep. ILTR-2023-009). Intel Labs. [Google Scholar] [Crossref]

177. Nakamura, K., et al. (2023). Hybrid SOA-Raman amplifiers. Journal of Lightwave Technology, 41(18), 6122–6135. https://doi.org/10.1109/JLT.2023.3299281 [Google Scholar] [Crossref]

178. Richardson, D. J. (2010). Applied physics. Filling the light pipe. Science, 330(6002), 327–328. https://doi.org/10.1126/science.1191708 [Google Scholar] [Crossref]

179. Jiang, W., et al. (2024). Terahertz communications and sensing for 6G and beyond: A comprehensive review. IEEE Communications Surveys & Tutorials, 26(1), 446–492. https://doi.org/10.1109/COMST.2024.3385908 [Google Scholar] [Crossref]

180. Zhang, G., et al. (2022). Demonstration of high output power DBR laser integrated with SOA for the FMCW LiDAR system. Optics Express, 30(2), 2599–2609. https://doi.org/10.1364/OE.448993 [Google Scholar] [Crossref]

181. Hong, Y.-Q., et al. (2021). SOA-based multilevel polarization shift on–off keying transmission for free-space optical communication. Photonics, 8(4), 100. https://doi.org/10.3390/photonics8040100 [Google Scholar] [Crossref]

182. Berghmans, F., et al. (1998). Radiation hardness of fiber-optic sensors for monitoring and remote handling applications in nuclear environments. In Proceedings of SPIE International Symposium on Industrial and Environmental Monitors and Biosensors (Vol. 3538, pp. 1–12). Boston, MA, USA. https://doi.org/10.1117/12.335757 [Google Scholar] [Crossref]

183. Gusarov, K., et al. (2011). Radiation hardness of fiber-optic sensors for monitoring and remote handling applications in nuclear environments. In Proceedings of the 2nd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA) (pp. 1–8). Ghent, Belgium. https://doi.org/10.1109/ANIMMA.2011.6172914 [Google Scholar] [Crossref]

184. Becker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Erbium-doped fiber amplifiers: Fundamentals and technology. Academic Press. [Google Scholar] [Crossref]

185. Udalcovs, A., et al. (2022). Bibliometric trends of optical amplifier research: SOAs vs. EDFAs. Journal of Optical Communications and Networking, 14(12), 1031–1045. https://doi.org/10.1364/JOCN.471005 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles