Determination of Polycyclic Aromatic Hydrocarbons and Total Petroleum Hydrocarbons in Crude Polluted Soil from Esaba, Ughelli South, Delta Nigeria
Authors
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Nnamdi Azikiwe University, Awka, Anambra State (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.1010000046
Subject Category: Biochemistry
Volume/Issue: 10/10 | Page No: 591-601
Publication Timeline
Submitted: 2025-10-26
Accepted: 2025-10-03
Published: 2025-11-03
Abstract
The current research examined the levels and composition of Polycyclic Aromatic Hydrocarbons (PAHs) and Total Petroleum Hydrocarbon (TPH) at six locations affected by crude oil spills (E1, E2, E3, E4, E5, and E6) within the Esaba community in the Niger Delta region, which is notable for petroleum exploration. The samples were assessed for the 16 priority PAHs recognized by the USEPA utilizing GC/FID analysis. The concentrations of Σ16 PAHs and TPH in the soil ranged from 19.322 to 83.542mg/kg with (average of 45.562mg/kg) and 890.908 to 4393.094mg/kg (average of 2622.097mg/kg) respectively. The concentrations of Σ16PAHs US-EPA and TPH in all the studied locations far exceeded the safety value of 10mg/kg and 100mg/kg respectively, set by the soil quality guidelines of Switzerland and above which is regarded as being highly contaminated for Agricultural soils of Poland. The mean PAHs concentrations recorded in E1, E2 and E3 studied locations were significantly greater that the permissible limit of 40mg/kg set by Department of Petroleum Resources (DPR) for oil spill sites. The result from this study showed higher distribution of low Molecular Weight (LMW) PAHs than high Molecular Weight (HMW) PAHs indicating possible petrogenic source. The research found that Site E2 had highest level of PAHs than the other sampled locations. It is recommended that immediate intervention not only at studied locations of E1, E2 E3 but also E4 be carried out given that all individual PAHs in E4 are known carcinogens.
Keywords
Polycycic Aromatic Hydrocarbon, Total Petroluem Hydrocarbon, Aliphatic Esaba, soil
Downloads
References
1. Abed, M., Ali, S. and Altawash, B. (2015). Health risk assessment of polycyclic aromatic hydrocarbons in surface soil at north Baiji City, Iraq, Iraqi Journal of Science, 56 :(4) 2927- 2938. [Google Scholar] [Crossref]
2. Abdel-Shafy, H. I. and Mansour, M. S. M. (2015). A Review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egyptian Journal of Petroleum,. 25: 107-123 [Google Scholar] [Crossref]
3. Adedosu, T. A., Adedosu, H. O., Sojinu, S.A. and Olajire, A.A. (2013). N-alkanes and polycyclic aromatic hydrocarbons (PAHs) profile of soil from some polluted sites in Niger Delta, Nigeria, Journal of Environmental Earth Sciences, 68: 2139–2144. [Google Scholar] [Crossref]
4. Adeniyi, A. A. and Afolabi, J. A. (2002). Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos Metropolis. Environment International. 28: 79–82. [Google Scholar] [Crossref]
5. Agency for Toxic Substances and Disease Registry (ATSDR) (1994). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, G.A: U.S. Department of Health and Human Services, Public Health Service. [Google Scholar] [Crossref]
6. Agency for Toxic Substances and Disease Registry (ATSDR), (1995). “Chemical and physical information, “in Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs), ATSDR, Atlanta, Ga, USA. pp. 209–221. [Google Scholar] [Crossref]
7. Akagbue, B.O., Popoola, T.O., Aminu, M. B., Nenger, J. A. and Babatunde, S. (2024). Negative health and environmental effects of oil exploitation in Southern Ijaw, Bayelsa State Nigeria, European Journal of Environment and Soil Science 5(3): 34-41. [Google Scholar] [Crossref]
8. Akyuz, H. M. and Cabuk, H. (2010). Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment, 408: 5550– 5558. [Google Scholar] [Crossref]
9. Al-Sad, H., Farid, W. and Abdul-Ameer, W. 2019 Distribution and sources of polycyclic aromatic hydrocarbons in soil along the Shatt Al-Arab river Delta Sothern Iraq. Soil and Water, 14: 84–95 [Google Scholar] [Crossref]
10. Aoeed, Y. H., Mohammed, A. B. and Hameed, A. M. (2023). Concentration of some polycyclic aromatic hydrocarbons in soil samples of Kirkuk province, Iraq, Earth and Environmental Science, 877: 1-12 [Google Scholar] [Crossref]
11. Ayedun, H., Jaiyeola, O. J., Onigbinde, S. O., Folarin, O.M. and Oyedeji, A. O. (2024). Polycyclic aromatic hydrocarbons (PAHs) in crude oil-contaminated water and soil and their removal using locally available plant materials, Water Practice and Technology, 19 (10): 3956-3971 [Google Scholar] [Crossref]
12. Barrán-Berdón, A., González, V., Aboytes, G., Rodea-Palomares, I., Arrillo-Chávez, A., Gómez, R. H. and Cuéllar, B. (2012). polycylic aromatic hydrocarbons in soils from a brick manufacturing location in central mexico Revista Internation Contaminacion Ambiental 28 (4): 277-288 [Google Scholar] [Crossref]
13. Boisa, N. T., Ideriah, J. K. and Okehie, C. S. (2019). Evaluation of polycyclic aromatic hydrocarbons and total petroleum Hydrocarbons profiles in some Nigerian crude oils, Journal of Scientific Research and Reports 23(1): 1-14, [Google Scholar] [Crossref]
14. California Environmental Protection Agency (CalEPA). (1994). Memorandum, to Cal/EPA Departments, Boards, and Offices from Standards and Criteria Work Group, Office of Environmental Health Hazard Assessment. Subject: California Cancer Potency Factors. In: A methodology for using background PAHS to support remediation decisions (2000). [Google Scholar] [Crossref]
15. Christopher, M. (2008). "Polycyclic aromatic hydrocarbons (PAHs) in urban soil: A Florida Risk Assessment Perspective," International Journal of Soil, Sediment and Water 1 (2):1-14. [Google Scholar] [Crossref]
16. Desaules, A., Ammann, S. Blum, F., Brandli, R. C., Bucheli, T. D. and Keller, K. (2008) PAHs and PCBs in soils of Switzerland—status and critical review, Journal of Environmental Monitoring, 10: 1265–1277 [Google Scholar] [Crossref]
17. Devatha, C. P., Vishnu, V. A., Purna, C. and RAO J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science 9: 89. [Google Scholar] [Crossref]
18. Dudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B.K. and Dave, B. P. (2016). Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environmental pollution. 213: 338-46 [Google Scholar] [Crossref]
19. Dudrikova, T., Minkina, T. Suchkova, S., Barbashev, A., Antonenko, E., Konstantiaova, D., Ivamstor, A. and Bakoeva, G. (2023). Background content of polycyclic aromatic hydrocarbons during monitoring of natural and anthropogenically transformed landscapes in the coastal area soils, Water. 15, 2424. [Google Scholar] [Crossref]
20. Faboya O. L., Sojinu S. O. and Otugboyega J. O. (2023). Preliminary investigation of polycyclic aromatic hydrocarbons (PAHs) concentration, compositional pattern, and ecological risk in crude oil-impacted soil from Niger Delta, Nigeria, Heliyon e15508 [Google Scholar] [Crossref]
21. Fetzer, J. C. (2000). "The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons". Polycyclic Aromatic Compounds (New York: Wiley) 27 (2): 143.doi:10.1080/10406630701268255. ISBN 0-471-36354-5 [Google Scholar] [Crossref]
22. Gan, S., Lau, E. V. and Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172: 532–549. [Google Scholar] [Crossref]
23. Gao, P., Xu, M., Liu, Y., da Silva, E. B., Xiang, P., and Ma, L. Q. (2019). Emerging and legacy PAHs in Urban Soils of Four Small Cities: Concentrations, Distribution, and Sources. Science of the Total Environment, 685: 463-470. [Google Scholar] [Crossref]
24. Ghosal, D., Ghosh, S., Dutta, T. K. and Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontier in Microbiology, 7: 1369. [Google Scholar] [Crossref]
25. Haritash, A. K. and Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1–15. [Google Scholar] [Crossref]
26. Jonker, M. T., Brils, J. M., Sinke, A. J., Murk, A. J. and Koelmans, A. A. (2006). Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons. Environmental Toxicology. Chemistry, 25: 1345-1353. [Google Scholar] [Crossref]
27. Keith, L. and Telliard W. EST. (1979). Special report priority pollutants: I-a perspective view. Environmetal Science and Technology 13:416–423. [Google Scholar] [Crossref]
28. Keith, L. H. (2015). The Source of U.S. EPA’s Sixteen PAH Priority Pollutants, Polycyclic Aromatic Compound, 35:147–160. [Google Scholar] [Crossref]
29. Khan, M. A. I., Biswas, B., Smith, E., Naidu, R. and Megharaj, M. (2018). Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere 212, 755–767. [Google Scholar] [Crossref]
30. Kuppusamy, S., Maddela, N. R., Megharaj, M., and Venkateswarlu, K. (2020). Impact of total petroleum hydrocarbons on human health. In: Impact of total petroleum hydrocarbons. Total Petroluem Hydrocarbons: Environmental Fate, Toxicity and Remediation 139-165. [Google Scholar] [Crossref]
31. Linden, O. and Jonas, P. (2013). Oil Contamination in Ogoni land, Niger Delta. Royal Swedish Management of the issues in the petroleum industry in Nigeria. In Paper Presented at SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Jun 7–10, Caracas, Venezue [Google Scholar] [Crossref]
32. Martinez-Cuesta, R., Conlon, R., Wang, M., Blanco-Romero, E., Duran, D., Redondo-Nieto, M., Dowling, D. Garrido-Sanz, D. Martin, M, Germaine, K. and Rivilla R. (2023). Field Scale biodegradation of total petroleum hydrocarbons and soil restoration by ecopiles, Frontiers in Microbiology, 14: 1158130 [Google Scholar] [Crossref]
33. Militon, C., Boucher, D., Vachelard, C., Perchet, G., Barra, V. and Troquet J. (2010). Bacterial Community Changes during Bioremediation of Aliphatic Hydrocarbon-Contaminated Soil. FEMS Microbiology and Ecology 74, 669–681. [Google Scholar] [Crossref]
34. Moore, F., Akhbarizadeh, R., Keshavarzi, B., Khabazi, S., Lahijanzadeh. A. and Kermani M. (2015). Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environmental Monitoring Assessment 187:207. [Google Scholar] [Crossref]
35. Mostert M., Ayoko G. and Kokot S. (2010). Application of Chemometrics to Analysis of Soil Pollutants. Trend in Analytical Chemistry 29 (95): 430–445. [Google Scholar] [Crossref]
36. Onyena, A. P. and Sam, K. (2020). A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria. Global Ecology and Conservation 22, e00961Phillips, D. H., (1999). “Polycyclic aromatic hydrocarbons in the diet, Mutation Research, 443 (1-2):139–147. [Google Scholar] [Crossref]
37. Polish Environment Ministry (2002). Quality Standards for Soils due to a Particular PAH Content. DZ.U.No.165. p. 135 [Google Scholar] [Crossref]
38. Roslund, M. I., Greenrooms, M., Rantalainen, A., Jumpponen, A., Romantschuk, M. Parajuli, A., Hyoty, H., Laitinen, O. and Sinkkonen, A. (2018). Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ 6, e4508 (2018). [Google Scholar] [Crossref]
39. Saadoun, I. M. (2015). Impact of Oil Spills on Marine Life. Emergency Pollution Environmental. -Current and Further Implication 10, 60455. [Google Scholar] [Crossref]
40. Sanches, S., Leitão, C., Penetra, A., Cardoso, V. V., Ferreira, E., Benoliel, M. J., Crespo, M. B. and Pereira, V. J. (2011). Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources. Journal of Hazardous Materials 192(3): 1458–1465. [Google Scholar] [Crossref]
41. Semple, K. T., Doick, K. J., Wick, L. Y. and Harms, H. (2007). Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environmental Pollution, 150, 166-176 [Google Scholar] [Crossref]
42. Tarafdar, A., Chawda, S. and Sinha, A. (2018). Health risk assessment from polycyclic aromatic hydrocarbons (PAHs) present in dietary components: A Meta-Analysis on a Global Scale. Polycyclic Aromatic Compound 40: 850–861. [Google Scholar] [Crossref]
43. Tiwari M., Sahu S.K. and Pandit, G.G. (2017). Distribution of PAHs in different compartment of creek ecosystem: ecotoxicological concern and human health risk. Environmental Toxicology and Pharmacology 50:58–66. [Google Scholar] [Crossref]
44. Tiwari, M., Sahu, S. K. and Pandit, G. G. (2015). Inhalation Risk Assessment of PAH Exposure due to Combustion Aerosols Generated from Household Fuels, Aerosol Air Quality Research, 15:582–590. [Google Scholar] [Crossref]
45. Ukiwe, L. N., Egereonu, U. U., Njoku, P. C., Nwoko, C. I. and Allinor, J. I. (2013) Polycyclic Aromatic Hydrocarbons Degradation Techniques, International Journal of Chemistry, 5(4): 43–55. [Google Scholar] [Crossref]
46. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology 223: 277–286. [Google Scholar] [Crossref]
47. Villeneuve, D. L., Khim, J. S., Kannan, K. and Giesy, J. P., (2002). “Relative Potencies of Individual Polycyclic Aromatic Hydrocarbons to Induce Dioxinlike and Estrogenic Responses in Three Cell Lines, Environmental Toxicology, 17 (2): 128- 137. [Google Scholar] [Crossref]
48. Wali, E., Nwanwoala, H. O., Ocheje, J. F. and Chinedu, J. O. (2019). Oil Spill Incidents and Wetlands Loss in Niger Delta: Implication for Sustainable Development Goals. International Journal Pollution Research 7(1), 1–20. [Google Scholar] [Crossref]
49. Wang, Z., Fingas, M. and Page, S. D. (1999). Oil spill identification [Review], Journal of. Chromatography A, 843: 369–411. [Google Scholar] [Crossref]
50. Wild, R. S., Obbard, J. P., Munn, C. I., Berrow, M. L. and Jones, K. C. (1991). The long-term Persistence polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges, Science of the Total Environment 101(3), 235–253 [Google Scholar] [Crossref]
51. World Health Organization Regional Office for Europe Polynuclear aromatic hydrocarbons (PAHs). (1987). In: Air quality guidelines For Europe. 105-117 [Google Scholar] [Crossref]
52. Zhao, Y., Duan, F.-A., Cui, Z., Hong, J. and Ni, S.-Q. (2021). Insights into the Vertical Distribution of the Microbiota in steel plant Soils with Potentially Toxic Elements and PAHs Contamination after 60 years Operation: Abundance, Structure, Co-occurrence network and Functionality. Science of Total Environment 786, 147338. [Google Scholar] [Crossref]