An Intelligent System for Analysing and Detecting Deepfake Videos: A Deep Learning Approach

Authors

Ofualagba Mamuyovwi Helen

Department of Computer Science, Ignatius Ajuru University of Education (IAUE) Port Harcourt (Nigeria)

Asagba Prince Oghenekaro

Department of Computer Science, Ignatius Ajuru University of Education (IAUE) Port Harcourt (Nigeria)

Nathaniel Ojekudo

Department of Computer Science, Ignatius Ajuru University of Education (IAUE) Port Harcourt (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.101100040

Subject Category: Computer Science

Volume/Issue: 10/11 | Page No: 411-435

Publication Timeline

Submitted: 2025-11-25

Accepted: 2025-12-02

Published: 2025-12-09

Abstract

The swift rise of Artificial Intelligence (AI) has brought about remarkable technological progress in numerous fields such as media, entertainment, and communication. Among the various outcomes of this advancement, deepfake technology stands out as a contentious issue; it involves using machine learning to artificially change video content. Although deepfakes have potential applications in creativity and education, they also pose significant ethical, legal, and social risks, such as spreading false information, impersonating others, and harming reputations. This increasing danger has underscored the urgency for effective and smart deepfake detection systems that can accurately and swiftly identify altered content. Despite ongoing research, many current deepfake detection models struggle with poor generalization and performance issues when faced with complex data sets. These limitations highlight a notable gap in research concerning the creation of resilient, flexible, and multimodal detection systems that can pinpoint inconsistencies in deepfake videos. This research aims to establish an intelligent model for both detecting and analyzing deepfake videos by utilizing cutting- edge deep learning methods. The study's primary goals are: (i) to create a deep learning framework that uses Long Short-Term Memory (LSTM) with attention mechanisms for analyzing temporal features, while also merging various features through Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN) for feature extraction, (ii) to implement a software prototype in Python that can identify videos as either fake or genuine, and (iii) to assess and contrast the effectiveness of existing deepfake detection models with the new system. The research methodology employs agile and responsive software development strategies to facilitate adaptability and ongoing enhancement. Training, testing, and evaluation of the model occur on Google Colab, which allows for GPU acceleration to expedite processing. The dataset comprises multiple types of deepfake and genuine videos, which undergo thorough pre-processing, feature extraction, and fusion before classification. Various performance metrics, including accuracy, precision, recall, and F1-score, are used to assess the model's effectiveness. The main discoveries from this research indicate that the proposed intelligent model significantly boosts detection accuracy compared to current models. By incorporating attention mechanisms and multimodal fusion, the model can identify subtle discrepancies in both video frames and audio signals, thus improving its reliability and durability. The software developed achieved high classification accuracy, proving its applicability in real-life situations. In summary, we have successfully created a sophisticated system for detecting deepfakes that integrates deep learning techniques with contemporary programming resources.

Keywords

Deepfake detection, Attention Mechanism, CNN, LSTM, Video Forensics, Deep Learning

Downloads

References

1. Aduwala, S. A., Arigala, M., Desai, S., Quan, H. J., & Eirinaki, M. (2021). Deepfake detection using GAN discriminators. Proceedings of the IEEE 7th International Conference on Big Data Computing Service and Applications (BigDataService 2021). https://doi.org/10.1109/BigDataService52369.2021.00014 [Google Scholar] [Crossref]

2. Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). MesoNet: A compact facial video forgery detection network. 2018 10th IEEE International Workshop on Information Forensics and Security (WIFS). [Google Scholar] [Crossref]

3. Agarwal, A., Agarwal, A., Sinha, S., Vatsa, M., & Singh, R. (2021). MD-CSDNetwork: Multi-domain cross stitched network for deepfake detection. 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 1–8. [Google Scholar] [Crossref]

4. Agarwal, S., El-Gaaly, T., Farid, H., & Lim, S.-N. (2020a). Detecting deep-fake videos from appearance and behavior. 2020 IEEE International Workshop on Information Forensics and Security (WIFS), 1–6. [Google Scholar] [Crossref]

5. Agarwal, S., El-Gaaly, T., Farid, H., & Lim, S.-N. (2020b). Detecting deep-fake videos from appearance and behavior. 2020 IEEE International Workshop on Information Forensics and Security (WIFS), 1–6. [Google Scholar] [Crossref]

6. Agarwal, S., Farid, H., Fried, O., & Agrawala, M. (2020a). Detecting deep-fake videos from phoneme- viseme mismatches. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2814–2822. [Google Scholar] [Crossref]

7. Agarwal, S., Farid, H., Fried, O., & Agrawala, M. (2020b). Detecting deep-fake videos from phoneme- viseme mismatches. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2814–2822. [Google Scholar] [Crossref]

8. Akgün, E., & Demir, M. (2018). Modeling course achievements of elementary education teacher candidates with artificial neural networks. International Journal of Assessment Tools in Education, 5(3). [Google Scholar] [Crossref]

9. Al-Dhabi, Y., & Zhang, S. (2021). Deepfake video detection by combining convolutional neural network (CNN) and recurrent neural network (RNN). 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE 2021). [Google Scholar] [Crossref]

10. Alkinani, H., Al-Hameedi, A. T., Dunn-Norman, S., Flori, R., Alsaba, M., & Amer, A. (2019, November). Applications of artificial neural networks in the petroleum industry: A review. Society of Petroleum Engineers. https://doi.org/10.2118/195072-MS [Google Scholar] [Crossref]

11. Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., Haq, Q. E. U., Saleem, K., & Faheem, M. H. (2023). A deep learning-based phishing detection system using CNN, LSTM, and LSTM-CNN. Electronics (Switzerland), 12(1). [Google Scholar] [Crossref]

13. Amerini, I., Galteri, L., Caldelli, R., & Del Bimbo, A. (2019). Deepfake video detection through optical flow based CNN. 2019 International Conference on Computer Vision Workshop (ICCVW). https://doi.org/10.1109/ICCVW.2019.00152 [Google Scholar] [Crossref]

14. Anas Raza, M., Mahmood Malik, K., & Ul Haq, I. (2023). HolisticDFD: Infusing spatiotemporal transformer embeddings for deepfake detection. Information Sciences, 645. https://doi.org/10.1016/j.ins.2023.119352 [Google Scholar] [Crossref]

15. Anjum, U. (2021). Artificial intelligence, machine learning and deep learning in healthcare. Bioscience Biotechnology Research Communications, 14(7). https://doi.org/10.21786/bbrc/14.7.36 [Google Scholar] [Crossref]

16. Awotunde, J. B., Jimoh, R. G., Imoize, A. L., Abdulrazaq, A. T., Li, C. T., & Lee, C. C. (2023). An enhanced deep learning-based deepfake video detection and classification system. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010087 [Google Scholar] [Crossref]

17. Babu, M. R., & Veena, K. N. (2021). A survey on attack detection methods for IoT using machine learning and deep learning. 2021 3rd International Conference on Signal Processing and Communication (ICSPC). https://doi.org/10.1109/ICSPC51351.2021.9451740 [Google Scholar] [Crossref]

18. Chang, W.-J., Chen, L.-B., & Su, K.-Y. (2019). DeepCrash: A deep learning-based Internet of Vehicles system for head-on and single-vehicle accident detection with emergency notification. IEEE Access, 7, 148163–148175. [Google Scholar] [Crossref]

19. Cheng, B., & Titterington, D. M. (1994). Neural networks: A review from a statistical perspective. Statistical Science, 9(1). [Google Scholar] [Crossref]

20. Chintha, A., Thai, B., Sohrawardi, S. J., Bhatt, K., Hickerson, A., Wright, M., & Ptucha, R. (2020). Recurrent convolutional structures for audio spoof and video deepfake detection. IEEE Journal of Selected Topics in Signal Processing, 14, 1024–1037. [Google Scholar] [Crossref]

21. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014a). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. [Google Scholar] [Crossref]

22. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014b). Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference. [Google Scholar] [Crossref]

23. Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science and Technology, 9(2). [Google Scholar] [Crossref]

24. Chowdhary, C. L., Alazab, M., Chaudhary, A., Hakak, S., & Gadekallu, T. R. (2021). Computer vision and recognition systems using machine and deep learning approaches: Fundamentals, technologies and applications. [Google Scholar] [Crossref]

25. Chowdhury, M. I., Zhao, Q., Su, K., & Liu, Y. (2021). CMNN: Coupled modular neural network. IEEE Access, 9. [Google Scholar] [Crossref]

26. Ciftci, U., Demir, I., & Yin, L. (2020a). How do the hearts of deep fakes beat? Deep fake source detection via interpreting residuals with biological signals. 2020 IEEE International Joint Conference on Biometrics (IJCB), 1–10. [Google Scholar] [Crossref]

27. Ciftci, U., Demir, I., & Yin, L. (2020b). How do the hearts of deep fakes beat? Deep fake source detection via interpreting residuals with biological signals. 2020 IEEE International Joint Conference on Biometrics (IJCB), 1–10. [Google Scholar] [Crossref]

28. Coccomini, D. A., Caldelli, R., Falchi, F., Gennaro, C., & Amato, G. (2022). Cross-forgery analysis of Vision Transformers and CNNs for deepfake image detection. MAD 2022 - Proceedings of the 1st International Workshop on Multimedia AI Against Disinformation. https://doi.org/10.1145/3512732.3533582 [Google Scholar] [Crossref]

29. Coccomini, D. A., Messina, N., Gennaro, C., & Falchi, F. (2022). Combining EfficientNet and Vision Transformers for video deepfake detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13233 LNCS. https://doi.org/10.1007/978-3-031-06433-3_19 [Google Scholar] [Crossref]

31. Conti, E., Salvi, D., Borrelli, C., Hosler, B., Bestagini, P., Antonacci, F., Sarti, A., Stamm, M. C., & Tubaro, S. (2022). Deepfake speech detection through emotion recognition: A semantic approach. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2022-May. https://doi.org/10.1109/ICASSP43922.2022.9747186 [Google Scholar] [Crossref]

32. Costales, J. A., Shiromani, S., & Devaraj, M. (2023). The impact of blockchain technology to protect image and video integrity from identity theft using deepfake analyzer. International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2023) - Proceedings. https://doi.org/10.1109/ICIDCA56705.2023.10099668 [Google Scholar] [Crossref]

33. Dagar, D., & Vishwakarma, D. K. (2022). A literature review and perspectives in deepfakes: Generation, detection, and applications. International Journal of Multimedia Information Retrieval, 11(3). [Google Scholar] [Crossref]

34. Dami, L. (2019). Deepfake Salvador Dalí takes selfies with museum visitors. The Verge. https://www.theverge.com/2019/6/19/18691125/deepfake-salvador-dali-museum-visitor-experience-ai. [Google Scholar] [Crossref]

35. Das, A., & Sebastian, L. (2023). A comparative analysis and study of a fast parallel CNN based deepfake video detection model with feature selection (FPC-DFM). Proceedings of the ACCTHPA 2023 [Google Scholar] [Crossref]

36. - Conference on Advanced Computing and Communication Technologies for High Performance Applications. [Google Scholar] [Crossref]

37. Delgado, S., Moran, F., Jose, J. C. S., & Burgos, D. (2021). Analysis of students’ behavior through user clustering in online learning settings, based on self organizing maps neural networks. IEEE Access, 9, 134244–134258. https://doi.org/10.1109/ACCESS.2021.3115024 [Google Scholar] [Crossref]

38. Dharmaraj, D. (2022). Convolutional neural networks (CNN) — Architecture explained. Medium. [Google Scholar] [Crossref]

39. Dong, Z., Wei, J., Chen, X., & Zheng, P. (2020). Face detection in security monitoring based on artificial intelligence video retrieval technology. IEEE Access, 8, 54166–54173. [Google Scholar] [Crossref]

40. Du, M., Pentyala, S., Li, Y., & Hu, X. (2020). Towards generalizable deepfake detection with locality- aware autoencoder. Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). [Google Scholar] [Crossref]

41. Durall, R., Keuper, M., Pfreundt, F., & Keuper, J. (2019). Unmasking deepfakes with simple features. arXiv. https://arxiv.org/abs/1911.00686 [Google Scholar] [Crossref]

42. El-Gayar, M. M., Abouhawwash, M., Askar, S. S., & Sweidan, S. (2024). A novel approach for detecting deep fake videos using graph neural network. Journal of Big Data, 11(1), 1–17. [Google Scholar] [Crossref]

43. Elpeltagy, M., Ismail, A., Zaki, M. S., & Eldahshan, K. (2023). A novel smart deepfake video detection system. International Journal of Advanced Computer Science and Applications, 14(1), 115–122. [Google Scholar] [Crossref]

44. Feinland, J., Barkovitch, J., Lee, D., Kaforey, A., & Ciftci, U. A. (2022). Poker bluff detection dataset based on facial analysis. In F. Falchi, A. Messina, G. Amato, & N. Vadicamo (Eds.), Lecture notes in computer science ( 13233, pp. 466–476). [Google Scholar] [Crossref]

45. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., & Holz, T. (2020). Leveraging frequency analysis for deep fake image recognition. Proceedings of the 37th International Conference on Machine Learning (ICML 2020). [Google Scholar] [Crossref]

46. Fukushima, K. (1987a). Neural network model for selective attention. Unpublished manuscript. [Google Scholar] [Crossref]

47. Fukushima, K. (1987b). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992. [Google Scholar] [Crossref]

48. Fukushima, K. (1989). Modeling visual systems for visual pattern recognition. Journal of the Japan Society for Precision Engineering, 55(4), 638–644. [Google Scholar] [Crossref]

49. Giudice, O., Guarnera, L., & Battiato, S. (2021). Fighting deepfakes by detecting GAN DCT anomalies. Journal of Imaging, 7(8), 128. [Google Scholar] [Crossref]

50. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks. In Advances in Neural Information Processing Systems (NeurIPS 2014). https://doi.org/10.1145/3422622 [Google Scholar] [Crossref]

51. Goswami, G., Bhardwaj, R., Singh, R., & Vatsa, M. (2014). MDLFace: Memorability augmented deep learning for video face recognition. IJCB 2014 - 2014 IEEE/IAPR International Joint Conference on Biometrics. https://doi.org/10.1109/BTAS.2014.6996299 [Google Scholar] [Crossref]

53. Guarnera, L., Giudice, O., & Battiato, S. (2020). Deepfake detection by analyzing convolutional traces. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2841–2850. https://doi.org/10.1109/CVPRW50498.2020.00341 [Google Scholar] [Crossref]

54. Guera, D., & Delp, E. J. (2018). Deepfake video detection using recurrent neural networks. Proceedings of AVSS 2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance. https://doi.org/10.1109/AVSS.2018.8639163 [Google Scholar] [Crossref]

55. Guo, J., Zhao, Y., & Wang, H. (2023). Generalized spoof detection and incremental algorithm recognition for voice spoofing. Applied Sciences (Switzerland), 13(13), 7773. https://doi.org/10.3390/app13137773 [Google Scholar] [Crossref]

56. Gurucharan, M. (2020). Basic CNN architecture: Explaining 5 layers of convolutional neural network. UpGrad Knowledge Base. [Google Scholar] [Crossref]

57. Gurucharan, M. K. (2022). Basic CNN architecture: Explaining 5 layers of convolutional neural network. UpGrad Blog. https://www.upgrad.com/blog/basic-cnn-architecture/ [Google Scholar] [Crossref]

58. Han, W., Zheng, C., Zhang, R., Guo, J., Yang, Q., & Shao, J. (2021). Modular neural network via exploring category hierarchy. Information Sciences, 569, 204–215. https://doi.org/10.1016/j.ins.2021.05.032 [Google Scholar] [Crossref]

59. Hao, H., Bartusiak, E. R., Güera, D., Mas Montserrat, D., Baireddy, S., Xiang, Z., Yarlagadda, S. K., Shao, R., Horváth, J., Yang, J., Zhu, F., & Delp, E. J. (2022). Deepfake detection using multiple data modalities. In Advances in Computer Vision and Pattern Recognition (pp. 205–220). https://doi.org/10.1007/978-3-030-87664-7_11 [Google Scholar] [Crossref]

60. He, M., Meng, Q., & Zhang, S. (2019). Collaborative additional variational autoencoder for top-N recommender systems. IEEE Access, 7, 117100–117110. https://doi.org/10.1109/ACCESS.2018.2890293 [Google Scholar] [Crossref]

61. He, Y., Gan, B., Chen, S., Zhou, Y., Yin, G., Song, L., Sheng, L., Shao, J., & Liu, Z. (2021). ForgeryNet: A versatile benchmark for comprehensive forgery analysis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), 7665–7674. [Google Scholar] [Crossref]

62. Heo, Y. J., Yeo, W. H., & Kim, B. G. (2023). Deepfake detection algorithm based on improved vision transformer. Applied Intelligence, 53(7), 8391–8406. [Google Scholar] [Crossref]

63. Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016). Session-based recommendations with recurrent neural networks. 4th International Conference on Learning Representations (ICLR 2016) - Conference Track Proceedings. [Google Scholar] [Crossref]

64. Hsu, C. C., Lee, C. Y., & Zhuang, Y. X. (2018). Learning to detect fake face images in the wild. Proceedings - 2018 International Symposium on Computer, Consumer and Control (IS3C 2018), 388– 391. [Google Scholar] [Crossref]

65. Hu, J., Liao, X., Liang, J., Zhou, W., & Qin, Z. (2022). FInfer: Frame inference-based deepfake detection for high-visual-quality videos. Proceedings of the AAAI Conference on Artificial Intelligence, 36(1), 1333–1341. [Google Scholar] [Crossref]

66. Huang, L., Xu, S., Liu, K., Yang, R., & Wu, L. (2021). A fuzzy radial basis adaptive inference network and its application to time-varying signal classification. Computational Intelligence and Neuroscience, 2021, Article 5528291. https://doi.org/10.1155/2021/5528291 [Google Scholar] [Crossref]

67. Ilbeigipour, S., Albadvi, A., & Akhondzadeh Noughabi, E. (2022). Cluster-based analysis of COVID-19 cases using self-organizing map neural network and K-means methods to improve medical decision- making. Informatics in Medicine Unlocked, 32, Article 101005. [Google Scholar] [Crossref]

68. https://doi.org/10.1016/j.imu.2022.101005 [Google Scholar] [Crossref]

69. Ilyas, H., Irtaza, A., Javed, A., & Malik, K. M. (2022). Deepfakes examiner: An end-to-end deep learning model for deepfakes videos detection. 2022 16th International Conference on Open Source Systems and Technologies (ICOSST 2022) - Proceedings, 1–6. https://doi.org/10.1109/ICOSST57195.2022.10016871 [Google Scholar] [Crossref]

70. Ismail, A., Elpeltagy, M., Zaki, M. S., & Eldahshan, K. (2021). A new deep learning-based methodology for video deepfake detection using XGBoost. Sensors, 21(16), Article 5413. [Google Scholar] [Crossref]

71. https://doi.org/10.3390/s21165413 [Google Scholar] [Crossref]

73. Ismail, A., Elpeltagy, M., Zaki, M. S., & Eldahshan, K. (2022). An integrated spatiotemporal-based methodology for deepfake detection. Neural Computing and Applications, 34(24), 21269–21284. https://doi.org/10.1007/s00521-022-07633-3 [Google Scholar] [Crossref]

74. Ivanov, N. S., Arzhskov, A. V., & Ivanenko, V. G. (2020). Combining deep learning and super- resolution algorithms for deep fake detection. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 53–57. https://doi.org/10.1109/EIConRus49466.2020.9039498. [Google Scholar] [Crossref]

75. Jaiswal, G. (2021). Hybrid recurrent deep learning model for deepfake video detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON 2021), 1–6. https:// doi.org/10.1109/UPCON 52273.2021.9667632 [Google Scholar] [Crossref]

76. Jalui, K., Jagtap, A., Sharma, S., Mary, G., Fernandes, R., & Kolhekar, M. (2022). Synthetic content detection in deepfake video using deep learning. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 1–6. [Google Scholar] [Crossref]

77. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2 [Google Scholar] [Crossref]

78. Jeong, Y., Kim, D., Ro, Y., & Choi, J. (2022). FrePGAN: Robust deepfake detection using frequency- level perturbations. Proceedings of the AAAI Conference on Artificial Intelligence, 36(1), 1233–1241. https://doi.org/10.1609/aaai.v36i1.19990 [Google Scholar] [Crossref]

79. Kandasamy, V., Hubálovský, Š., & Trojovský, P. (2022). Deep fake detection using a sparse autoencoder with a graph capsule dual graph CNN. PeerJ Computer Science, 8, e953. https://doi.org/10.7717/peerj-cs.953 [Google Scholar] [Crossref]

80. Kanwal, S., Tehsin, S., & Saif, S. (2022). Exposing AI generated deepfake images using Siamese network with triplet loss. Computing and Informatics, 41(6), 1346–1366. https://doi.org/10.31577/cai_2022_6_1541 [Google Scholar] [Crossref]

81. Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive growing of GANs for improved quality, stability, and variation. 6th International Conference on Learning Representations (ICLR 2018) [Google Scholar] [Crossref]

82. - Conference Track Proceedings. https://arxiv.org/abs/1710.10196 [Google Scholar] [Crossref]

83. Kaur, J., & Kaur, P. (2018). A review: Artificial neural network. International Journal of Current Engineering and Technology, 8(4), 1258–1263. https://doi.org/10.14741/ijcet/v.8.4.2 [Google Scholar] [Crossref]

84. Khalid, F., Akbar, M. H., & Gul, S. (2023). SWYNT: Swin Y-Net transformers for deepfake detection. 2023 International Conference on Robotics and Automation in Industry (ICRAI), 1–6. https://doi.org/10.1109/ICRAI57502.2023.10089585 [Google Scholar] [Crossref]

85. Khalid, H., & Woo, S. S. (2020). OC-FakeDect: Classifying deepfakes using one-class variational autoencoder. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2020), 2880–2886. https://doi.org/10.1109/CVPRW50498.2020.00333 [Google Scholar] [Crossref]

86. Khan, S. A., & Dang-Nguyen, D. T. (2022). Hybrid transformer network for deepfake detection. ACM International Conference Proceeding Series, 164–169. https://doi. org/10.1145/ 3549555.3549588 [Google Scholar] [Crossref]

87. Khedkar, A., Peshkar, A., Nagdive, A., Gaikwad, M., & Baudha, S. (2022). Exploiting spatiotemporal inconsistencies to detect deepfake videos in the wild. International Conference on Emerging Trends in Engineering and Technology, ICETET, 2022-April. https://doi.org/10.1109/ICETET-SIP- 2254415.2022.9791719. [Google Scholar] [Crossref]

88. Khodabakhsh, A., & Loiselle, H. (2020). Action-Independent Generalized Behavioral Identity Descriptors for Look-alike Recognition in Videos. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI), P-306. [Google Scholar] [Crossref]

89. Khodabakhsh, A., Ramachandra, R., Raja, K., Wasnik, P., & Busch, C. (2018). Fake Face Detection Methods: Can They Be Generalized? 2018 International Conference of the Biometrics Special Interest Group, BIOSIG 2018. https://doi.org/10.23919/BIOSIG.2018.8553251. [Google Scholar] [Crossref]

90. Khormali, A., & Yuan, J.-S. (2022). DFDT: An End-to-End DeepFake Detection Framework Using Vision Transformer. Applied Sciences. https://api.semanticscholar.org /CorpusID:247495859. [Google Scholar] [Crossref]

91. Ki Chan, C. C., Kumar, V., Delaney, S., & Gochoo, M. (2020). Combating Deepfakes: Multi-LSTM and Blockchain as Proof of Authenticity for Digital Media. 2020 IEEE / ITU International Conference on Artificial Intelligence for Good, AI4G 2020. https://doi.org/10.1109/AI4G50087.2020.9311067. [Google Scholar] [Crossref]

93. Kim, P. (2017). MATLAB Deep Learning. In MATLAB Deep Learning. https://doi.org/10.1007/978-1- 4842-2845-6. [Google Scholar] [Crossref]

94. Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1–3). https://doi.org/10.1016/ S0925-2312(98)00030-7. [Google Scholar] [Crossref]

95. Korshunov, P., & Marcel, S. (2019). Vulnerability assessment and detection of Deepfake videos. 2019 International Conference on Biometrics, ICB 2019. https://doi.org/10. 1109/ICB45273.2019.8987375. [Google Scholar] [Crossref]

96. Kosarkar, U., Sarkarkar, G., & Gedam, S. (2023). Revealing and Classification of Deepfakes Kuang, L., Wang, Y., Hang, T., Chen, B., & Zhao, G. (2022). A dual-branch neural network for DeepFake video detection by detecting spatial and temporal inconsistencies. Multimedia Tools and Applications, 81(29), 41879–41900. https://doi.org/10.1007/s11042-021-11539-y [Google Scholar] [Crossref]

97. Kumar, A., & Bhavsar, A. (2020). Detecting Deepfakes with metric learning. 2020 8th International Workshop on Biometrics and Forensics (IWBF), 1–6. https://doi.org/10.1109/IWBF49977.2020.9107962 [Google Scholar] [Crossref]

98. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989a). Backpropagation applied to digit recognition. Neural Computation, 1(4), 541–551. [Google Scholar] [Crossref]

99. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989b). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541– [Google Scholar] [Crossref]

100. https://doi.org/10.1162/neco.1989.1.4.541 [Google Scholar] [Crossref]

101. Lee, U., & Lee, I. (2022). Efficient sampling-based inverse reliability analysis combining Monte Carlo simulation (MCS) and feedforward neural network (FNN). Structural and Multidisciplinary Optimization, 65(1), 181–198. https://doi.org/10.1007/s00158-021-03144-2 [Google Scholar] [Crossref]

102. Li, Q., Gao, M., Zhang, G., & Zhai, W. (2023). Defending Deepfakes by saliency-aware attack. IEEE Transactions on Computational Social Systems. https://doi.org/10.1109/TCSS.2023.3271121 [Google Scholar] [Crossref]

103. Li, Y., & Lyu, S. (2019). Exposing DeepFake videos by detecting face warping artifacts. [Manuscript in preparation]. [Google Scholar] [Crossref]

104. Li, Y., Chang, M. C., & Lyu, S. (2018). In Ictu Oculi: Exposing AI-created fake videos by detecting eye blinking. 10th IEEE International Workshop on Information Forensics and Security (WIFS 2018), 1–7. https://doi.org/10.1109/WIFS.2018.8630787 [Google Scholar] [Crossref]

105. Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2019a). Celeb-DF: A large-scale challenging dataset for DeepFake forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3204–3213. https://doi.org/10.1109/CVPR42600.2020.00327 [Google Scholar] [Crossref]

106. Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2019b). Celeb-DF: A large-scale challenging dataset for DeepFake forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3204–3213. https://doi.org/10.1109/CVPR42600.2020.00327 [Google Scholar] [Crossref]

107. Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018). Variational autoencoders for collaborative filtering. Proceedings of the 2018 World Wide Web Conference (WWW 2018), 689–698. https://doi.org/10.1145/3178876.3186150 [Google Scholar] [Crossref]

108. Lin, H., Huang, W., Luo, W., & Lu, W. (2023). DeepFake detection with multi-scale convolution and vision transformer. Digital Signal Processing: A Review Journal, 134, Article 103895. https://doi.org/10.1016/j.dsp.2022.103895 [Google Scholar] [Crossref]

109. Lin, X., Yang, X., & Li, Y. (2019). A deep clustering algorithm based on Gaussian mixture model. Journal of Physics: Conference Series, 1302(3), 032012. https://doi.org/10.1088/1742- 6596/1302/3/032012 [Google Scholar] [Crossref]

110. Liu, C., Li, J., Duan, J., & Huang, H. (2022). Video forgery detection using spatio-temporal dual transformer. Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition, Article 3581847. https://doi.org/10.1145/3581807.3581847 [Google Scholar] [Crossref]

111. Liu, P. (2021). Automated Deepfake detection. arXiv Preprint. https://arxiv.org/abs/2106.10705 [Google Scholar] [Crossref]

112. Liu, Y., Zhang, Y., & Liu, W. (2022). A novel face forgery detection method based on augmented dual- stream networks. ACM International Conference Proceeding Series. https://doi.org/10.1145/3573942.357403 [Google Scholar] [Crossref]

113. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. 2015 IEEE International Conference on Computer Vision (ICCV), 3730–3738. https://doi.org/10.1109/ICCV.2015.425 [Google Scholar] [Crossref]

115. Mahmud, B. U., & Sharmin, A. (2021). Deep insights of DeepFake technology: A review. arXiv Preprint. https://arxiv.org/abs/2105.00192 [Google Scholar] [Crossref]

116. Majeed, M. A., Shafri, H. Z. M., Zulkafli, Z., & Wayayok, A. (2023). A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention. International Journal of Environmental Research and Public Health, 20(5), Article 4130. https://doi.org/10.3390/ijerph20054130 [Google Scholar] [Crossref]

117. Maksutov, A. A., Morozov, V. O., Lavrenov, A. A., & Smirnov, A. S. (2020). Methods of DeepFake detection based on machine learning. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 1923–1927. https://doi.org/10.1109/EIConRus49466.2020.9039057 [Google Scholar] [Crossref]

118. Malolan, B., Parekh, A., & Kazi, F. (2020). Explainable DeepFake detection using visual interpretability methods. 3rd International Conference on Information and Computer Technologies (ICICT 2020), 225– [Google Scholar] [Crossref]

119. https://doi.org/10.1109/ICICT50521.2020.00051 [Google Scholar] [Crossref]

120. Masi, I., Killekar, A., Mascarenhas, R., Gurudatt, S. P., & AbdAlmageed, W. (2020). Two-branch recurrent network for isolating DeepFakes in videos. In European Conference on Computer Vision (ECCV 2020) (pp. 659–675). Springer. https://doi.org/10.1007/978-3-030-58571-6_39 [Google Scholar] [Crossref]

121. Masih, D. R. A. J. D. R. J. (2023). Enhancing employee efficiency and performance in Industry 5.0 organizations through artificial intelligence integration. European Economic Letters (EEL), 13(4). https://doi.org/10.52783/eel.v13i4.589 [Google Scholar] [Crossref]

122. Masood, M., Nawaz, M., Javed, A., Nazir, T., Mehmood, A., & Mahum, R. (2021). Classification of DeepFake videos using pre-trained convolutional neural networks. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2 2021), 1–6. https://doi.org/10.1109/ICoDT252288.2021.9441519 [Google Scholar] [Crossref]

123. Melin, P., Miramontes, I., & Prado-Arechiga, G. (2018). A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Systems with Applications, 107. https://doi.org/10.1016/j.eswa.2018.04.023. [Google Scholar] [Crossref]

124. Miao, Y., Dong, H., Al Jaam, J. M., & El Saddik, A. (2019). A deep learning system for recognizing facial expression in real-time. ACM Transactions on Multimedia Computing, Communications and Applications, 15(2). https://doi.org/10.1145/3311747 [Google Scholar] [Crossref]

125. Mirsky, Y., & Lee, W. (2021). The creation and detection of deepfakes: A survey. ACM Computing Surveys (CSUR), 54(1), 1–41. [Google Scholar] [Crossref]

126. Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. [Google Scholar] [Crossref]

127. Mitra, A., Mohanty, S. P., Corcoran, P., & Kougianos, E. (2020). A Novel Machine Learning based Method for Deepfake Video Detection in Social Media. Proceedings - 2020 6th IEEE International Symposium on Smart Electronic Systems, ISES 2020. https://doi.org/10.1109/iSES50453.2020.00031 [Google Scholar] [Crossref]

128. Mittal, H., Saraswat, M., Bansal, J. C., & Nagar, A. (2020). Fake-Face Image Classification using Improved Quantum-Inspired Evolutionary-based Feature Selection Method. 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020. https://doi.org/10.1109/SSCI47803.2020.9308337 [Google Scholar] [Crossref]

129. Mo, H., Chen, B., & Luo, W. (2018). Fake faces identification via convolutional neural network. IH and MMSec 2018 - Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. https://doi.org/10.1145/3206004.3206009 [Google Scholar] [Crossref]

130. Montserrat, D. M., Hao, H., Yarlagadda, S., Baireddy, S., Shao, R., Horváth, J., Bartusiak, E. R., Yang, J., Guera, D., Zhu, F., & Delp, E. (2020). Deepfakes Detection with Automatic Face Weighting. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), null, 2851– 2859. https://doi.org/10.1109/CVPRW50498.2020.00342 [Google Scholar] [Crossref]

131. Naik, N., Hameed, B. M. Z., Sooriyaperakasam, N., Vinayahalingam, S., Patil, V., Smriti, K., Saxena, J., Shah, M., Ibrahim, S., Singh, A., Karimi, H., Naganathan, K., Shetty, D. K., Rai, B. P., Chlosta, P., & Somani, B. K. (2022). Transforming healthcare through a digital revolution: A review of digital healthcare technologies and solutions. In Frontiers in Digital Health (Vol. 4). https://doi.org/10.3389/fdgth.2022.919985 [Google Scholar] [Crossref]

132. Park, J., Lee, W., & Huh, K. Y. (2022). Model order reduction by radial basis function network for sparse reconstruction of an industrial natural gas boiler. Case Studies in Thermal Engineering, 37. https://doi.org/10.1016/j.csite.2022.102288 [Google Scholar] [Crossref]

134. Passos, L. A., Jodas, D., Costa, K. A. P., Souza Júnior, L. A., Rodrigues, D., Del Ser, J., Camacho, D., & Papa, J. P. (2024). A review of deep learning‐based approaches for deepfake content detection. Expert Systems. https://doi.org/10.1111/exsy.13570 [Google Scholar] [Crossref]

135. Patel Nimitt, Jethwa Niket, Mali Chirag, and Deone Jyoti. (2022). Deepfake Video Detection using Neural Networks. ITM Web Conf., 44, 3024. https://doi.org/10.1051/itmconf/20224403024 [Google Scholar] [Crossref]

136. Polson, N. G., & Sokolov, V. O. (2018). Deep Learning - Nature Review. Nature, 521(7553). [Google Scholar] [Crossref]

137. Preeti, Kumar, M., & Sharma, H. K. (2022). A GAN-Based Model of Deepfake Detection in Social Media. Procedia Computer Science, 218. https://doi.org/10.1016/j.procs.2023.01.191 [Google Scholar] [Crossref]

138. Pu, W., Hu, J., Wang, X., Li, Y., Hu, S., Zhu, B., Song, R., Song, Q., Wu, X., & Lyu, S. (2022). [Google Scholar] [Crossref]

139. Learning a deep dual-level network for robust DeepFake detection. Pattern Recognition, 130. https://doi.org/10.1016/j.patcog.2022.108832 [Google Scholar] [Crossref]

140. Qing, L., Mengqiu, Y., Zhaoping, L., & Jiancheng, L. (2021). Research on video automatic feature extraction technology based on deep neural network. Proceedings of IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, IPEC 2021. [Google Scholar] [Crossref]

141. https://doi.org/10.1109/IPEC51340.2021.9421272 [Google Scholar] [Crossref]

142. Quadrana, M., Karatzoglou, A., Hidasi, B., & Cremonesi, P. (2017). Personalizing Session-Based Recommendations with Hierarchical Recurrent Neural Networks. Proceedings of the Eleventh ACM Conference on Recommender Systems, 130–137. https://doi.org/10.1145/3109859.3109896 [Google Scholar] [Crossref]

143. Qurat-Ul-Ain, Nida, N., Irtaza, A., & Ilyas, N. (2021). Forged Face Detection using ELA and Deep Learning Techniques. Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021. https://doi.org/10.1109/IBCAST51254.2021.9393234 [Google Scholar] [Crossref]

144. Rafique, R., Nawaz, M., Kibriya, H., & Masood, M. (2021). DeepFake Detection Using Error Level Analysis and Deep Learning. Proceedings - 2021 IEEE 4th International Conference on Computing and Information Sciences, ICCIS 2021. https://doi.org/10.1109/ICCIS54243.2021.9676375 [Google Scholar] [Crossref]

145. Rajalaxmi, R. R., Sudharsana, P. P., Rithani, A. M., Preethika, S., Dhivakar, P., & Gothai, E. (2023). Deepfake detection using Inception-ResNet-V2 network. Proceedings of the 7th International Conference on Computing Methodologies and Communication (ICCMC 2023). https://doi.org/10.1109/ICCMC56507.2023.10083584 [Google Scholar] [Crossref]

146. Rani, R., Kumar, T., & Sah, M. P. (2022). A review on deepfake media detection. Lecture Notes in Networks and Systems, 461. https://doi.org/10.1007/978-981-19-2130-8_28 [Google Scholar] [Crossref]

147. Ranjan, P., Patil, S., & Kazi, F. (2020). Improved generalizability of deepfakes detection using transfer learning-based CNN framework. In 2020 3rd International Conference on Information and Computer Technologies (ICICT) (pp. 86–90). https://doi.org/10.1109/ICICT50521.2020.00021 [Google Scholar] [Crossref]

148. Rebello, L., Tuscano, L., Shah, Y., Solomon, A., & Shrivastava, V. (2023). Detection of deepfake video using deep learning and MesoNet. Proceedings of the 8th International Conference on Communication and Electronics Systems (ICCES 2023). https://doi.org/10.1109/ICCES57224.2023.10192854 [Google Scholar] [Crossref]

149. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2018). FaceForensics: A large-scale video dataset for forgery detection in human faces. ArXiv preprint arXiv:1803.09179. [Google Scholar] [Crossref]

150. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2019) (pp. 1–10). https://doi.org/10.1109/ICCV.2019.00009 [Google Scholar] [Crossref]

151. S, L., & Sooda, K. (2022). Deepfake detection through key video frame extraction using GAN. In 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS) (pp. 859–863). https://doi.org/10.1109/ICACRS55517.2022.10029095 [Google Scholar] [Crossref]

152. Saber, A. M., Hassan, M. T., Mohamed, M. S., ElHusseiny, R., Eltaher, Y. M., Abdelrazek, M., & Omar, Y. M. K. (2022). Deepfake video detection. In 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) (pp. 425–431). [Google Scholar] [Crossref]

153. Saif, S., Tehseen, S., Ali, S. S., Kausar, S., & Jameel, A. (2022). Generalized deepfake video detection through time-distribution and metric learning. IT Professional, 24(2). https://doi.org/10.1109/MITP.2022.3168351 [Google Scholar] [Crossref]

154. Saraswathi, R. V., Gadwalkar, M., Midhun, S. S., Goud, G. N., & Vidavaluri, A. (2022). Detection of synthesized videos using CNN. Proceedings of the International Conference on Augmented Intelligence and Sustainable Systems (ICAISS 2022). https://doi.org/10.1109/ICAISS55157.2022.10011073 [Google Scholar] [Crossref]

156. Saraswathi, R. V., Gadwalkar, M., Midhun, S. S., Goud, G. N., & Vidavaluri, A. (2022). Detection of Synthesized Videos using CNN. Proceedings - International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2022. https://doi.org/10.1109/ICAISS55157.2022.10011073 [Google Scholar] [Crossref]

157. Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6). https://doi.org/10.1007/s42979-021-00815-1 [Google Scholar] [Crossref]

158. Saxena, A., Yadav, D., Gupta, M., Phulre, S., Arjariya, T., Jaiswal, V., & Bhujade, R. K. (2023). Detecting deepfakes: A novel framework employing XceptionNet-based convolutional neural networks. Traitement Du Signal, 40(3). https://doi.org/10.18280/ts.400301 [Google Scholar] [Crossref]

159. Şengür, A., Akhtar, Z., Akbulut, Y., Ekici, S., & Budak, Ü. (2019). Deep feature extraction for face liveness detection. 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018. https://doi.org/10.1109/IDAP.2018.8620804 [Google Scholar] [Crossref]

160. Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. https://doi.org/10.1016/j.physd.2019.132306 [Google Scholar] [Crossref]

161. Shiohara, K., & Yamasaki, T. (2022a). Detecting deepfakes with self-blended images. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 18699–18708). https://doi.org/10.1109/CVPR52688.2022.01816 [Google Scholar] [Crossref]

162. Shiohara, K., & Yamasaki, T. (2022b). Detecting deepfakes with self-blended images. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 18699–18708). https://doi.org/10.1109/CVPR52688.2022.01816 [Google Scholar] [Crossref]

163. Shobha Rani, R. B., Kumar Pareek, P., Bharathi, S., & Geetha, G. (2023). Deepfake video detection system using deep neural networks. In 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS 2023) (pp. 1–6). https://doi.org/10.1109/ICICACS57338.2023.10099618 [Google Scholar] [Crossref]

164. Sille, R., Choudhury, T., Sharma, A., Chauhan, P., Tomar, R., & Sharma, D. (2023). A novel generative adversarial network-based approach for automated brain tumour segmentation. Medicina, 59, 119. https://doi.org/10.3390/medicina59010119 [Google Scholar] [Crossref]

165. Sohn, I. (2021). Deep belief network based intrusion detection techniques: A survey. Expert Systems with Applications, 167. https://doi.org/10.1016/j.eswa.2020.114170 [Google Scholar] [Crossref]

166. Song, H., Kim, H., & Lee, H. (2022). Countering deepfake threats to corporate reputation: The roles of media, stakeholders, and crisis communication strategies. Corporate Communications: An International Journal, 28(1), 18–34. https://doi.org/10.1108/CCIJ-07-2021-0083 [Google Scholar] [Crossref]

167. Song, Y., Liu, Y., Wang, M., & Tan, T. (2023). Deepfake detection using attention-based fusion and contrastive learning. Neurocomputing, 523, 111–122. https://doi.org/10.1016/j.neucom.2022.10.018 [Google Scholar] [Crossref]

168. Srinivasan, R., Rajendran, P., & Uma, G. V. (2021). A novel framework for deepfake detection using optimal feature selection. Journal of Ambient Intelligence and Humanized Computing, 12, 11271– 11281. https://doi.org/10.1007/s12652-021-02979-2 [Google Scholar] [Crossref]

169. Sundararaj, V., Chithra, N., Vinayakumar, R., & Soman, K. P. (2022). DeepFake detection: A new benchmark dataset and method for face and voice forgery detection using a capsule network. Applied Soft Computing, 118, 108439. https://doi.org/10.1016/j.asoc.2022.108439 [Google Scholar] [Crossref]

170. Thakur, M., & Maheshkar, S. (2023). Deepfake menace and regulations: The laws of United States and India. International Journal of Law and Management, 65(1), 77–89. https://doi.org/10.1108/IJLMA-08- 2022-0200 [Google Scholar] [Crossref]

171. Tolosana, R., Romero-Tapiador, S., & Fierrez, J. (2023). Deepfakes evolution and detection: Recent advances and open challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 552–569. https://doi.org/10.1109/TPAMI.2022.3168322 [Google Scholar] [Crossref]

172. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 64, 131–148. https://doi.org/10.1016/j.inffus.2020.07.007 [Google Scholar] [Crossref]

173. Vakharia, M. P., & Kumar, P. R. (2021). A comprehensive study of generative adversarial networks and their applications. Procedia Computer Science, 192, 1705–1714. [Google Scholar] [Crossref]

174. https://doi.org/10.1016/j.procs.2021.08.175 [Google Scholar] [Crossref]

176. Varol, C., Gürkan, H., & Çetinoğlu, E. K. (2021). Deepfake video detection using frame transition consistency. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). https://doi.org/10.1109/SIU53274.2021.9477739 [Google Scholar] [Crossref]

177. Verdoliva, L. (2020). Media forensics and deepfakes: An overview. IEEE Journal of Selected Topics in Signal Processing, 14(5), 910–932. https://doi.org/10.1109/JSTSP.2020.2998603 [Google Scholar] [Crossref]

178. Verdoliva, L., & Gragnaniello, D. (2023). Recent advances in deepfake detection: Challenges, opportunities and future directions. Information Fusion, 91, 190–209. https://doi.org/10.1016/j.inffus.2023.01.012 [Google Scholar] [Crossref]

179. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 8695–8704). https://doi.org/10.1109/CVPR42600.2020.00872 [Google Scholar] [Crossref]

180. Wang, X., Peng, W., & Wang, Y. (2021). A survey on deepfake detection techniques. Computational Intelligence and Neuroscience, 2021, Article ID 5573475. https://doi.org/10.1155/2021/5573475 [Google Scholar] [Crossref]

181. Westerlund, M. (2019). The emergence of deepfake technology: A review. Technology Innovation Management Review, 9(11), 39–52. https://doi.org/10.22215/timreview/1282 [Google Scholar] [Crossref]

182. Yang, X., Li, Y., & Lyu, S. (2019). Exposing deep fakes using inconsistent head poses. In ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8261–8265). https://doi.org/10.1109/ICASSP.2019.8683164 [Google Scholar] [Crossref]

183. Yousuf, M. A., & Qureshi, M. A. (2021). A comprehensive review of deepfake detection techniques: State-of-the-art and future directions. Multimedia Tools and Applications, 80, 29333–29363. https://doi.org/10.1007/s11042-021-11100-1 [Google Scholar] [Crossref]

184. Zhang, H., Liu, H., Wang, X., & Zhang, Y. (2022). Face X-ray for more general face forgery detection. IEEE Transactions on Information Forensics and Security, 17, 624–639. https://doi.org/10.1109/TIFS.2021.3119237 [Google Scholar] [Crossref]

185. Zhang, Y., Wang, X., & Qian, Y. (2023). A novel multimodal framework for deepfake video detection. Neurocomputing, 519, 372–384. https://doi.org/10.1016/j.neucom.2022.09.042 [Google Scholar] [Crossref]

186. Zhao, H., Liu, Z., Zhou, Y., & Shi, J. (2021). Multi-scale attention-based deepfake detection. In Proceedings of the AAAI Conference on Artificial Intelligence, 35(4), 3563–3571. https://doi.org/10.1609/aaai.v35i4.16498 [Google Scholar] [Crossref]

187. Zhou, P., Han, X., Morariu, V. I., & Davis, L. S. (2018). Two-stream neural networks for tampered face detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1831–1839). https://doi.org /10.1109/CV PRW.2017.228. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles