Beyond Insects: Emerging Arthropod Reservoirs of Current and Novel Entomopathogens for Insect Pest Management – A Review

Authors

Babatunde A. Kelly

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

Taiye A Jemilaiye

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

Funmi Olatujoye

Department of Microbiology, Wesley University Ondo (Nigeria)

Olayinka E. Omoseyin

Department of Microbiology, Wesley University Ondo (Nigeria)

Marcus O. Bello

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

David O. Adegbola

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

David O. Ajibola

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

Esther L. Jacob

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

Oluwabunmi G. Adeusi

Department of Microbiology, Adekunle Ajasin University Akungba-Akoko (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.101100071

Subject Category: Microbiology

Volume/Issue: 10/11 | Page No: 760-766

Publication Timeline

Submitted: 2025-11-11

Accepted: 2025-11-18

Published: 2025-12-18

Abstract

With the increasing resistance of insects to chemical pesticides, regulatory pressure on chemical pesticides, and the need for environmentally friendly and benign pest management systems, efforts are geared towards the search for new entomopathogens. Traditional bioprospecting focuses on diseased insects in sourcing for microbes to be used in formulating biopesticides, yet a wide range of non‑insect arthropods—copepods, arachnids (spiders and mites), myriapods (millipedes, centipedes), and other arthropod lineages—harbour microbial pathogens (fungi, oomycetes, microsporidia, bacteria, and viruses) with potentials to control insect pests. This manuscript reviews the ecological rationales, discovery methods, promising taxa, safety considerations, and the processes for sourcing novel entomopathogens from alternative arthropod reservoirs other than insects. We gave evidence that spider‑pathogenic fungi (e.g., Gibellula spp.), entomophthoralean fungi associated with springtails and mites (e.g., Pandora, Conidiobolus), oomycetes found on arthropods in aquatic environment (e.g., Lagenidium, Leptolegnia), as well as microsporidia linked with aquatic crustaceans (copepods) all represent yet-to-be-fully explored resources for both crop and veterinary pest management. We outline an integrated discovery framework which combines high‑throughput field sampling, specialized culture strategies, functional screening in Galleria mellonella and target pests, multi‑omics (amplicon, shotgun metagenomics, metabolomics), and genome mining for virulence/secondary metabolite clusters. Finally, we highlight a regulatory and formulation roadmap to de‑risk development while safeguarding non‑targets and aquatic ecosystems.

Keywords

entomopathogens; alternative reservoirs; arachnids; copepods; microsporidia

Downloads

References

1. Araújo, J. P. M., & Hughes, D. P. (2016). Diversity of entomopathogenic fungi: Which groups conquered the insect body? Advances in Genetics, 94, 1–39. [Google Scholar] [Crossref]

2. Barelli, L., Behie, S. W., Hu, S., & Bidochka, M. J. (2022). Profiling destruxin synthesis by specialist and generalist Metarhizium insect pathogens during coculture with plants. Applied and Environmental Microbiology, 88(12), e02474-21. https://doi.org/10.1128/msphere.00349-22 [Google Scholar] [Crossref]

3. Bass, D., Rueckert, S., Stern, R., Cleary, A. C., Taylor, J. D., Ward, G. M., & Huys, R. (2021). Parasites, pathogens, and other symbionts of copepods. Trends in Parasitology, 37(10), 875-889. https://doi.org/10.1016/j.pt.2021.06.008 [Google Scholar] [Crossref]

4. Batta, Y. A. (2016). Recent advances in formulation and application of entomopathogenic fungi for biocontrol of stored-grain insects. Biocontrol Science and Technology, 26(9), 1171-1183. [Google Scholar] [Crossref]

5. Bihal, R., Al-Khayri, J. M., Banu, A. N., Kudesia, N., Ahmed, F. K., Sarkar, R., Arora, A., & Abd-Elsalam, K. A. (2023). Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms, 11(6), 1617. https://doi.org/10.3390/microorganisms11061617 [Google Scholar] [Crossref]

6. de Sousa, T. K., Silva, A. T. D., & Soares, F. E. F. (2025). Fungi-based bioproducts: A review in the context of One Health. Pathogens, 14(5), 463. https://doi.org/10.3390/pathogens14050463 [Google Scholar] [Crossref]

7. EFSA. (2025). FINAL - Framework Document - Advisory Regulatory Working Group January 2025. International Biocontrol Manufacturers Association (IBMA). [Google Scholar] [Crossref]

8. Evans, H. C., Fogg, T., Buddie, A. G., Yeap, Y. T., & Araújo, J. P. M. (2025). The araneopathogenic genus Gibellula (Cordycipitaceae: Hypocreales) in the British Isles, including a new zombie species on orb-weaving cave spiders (Metainae: Tetragnathidae). Fungal systematics and evolution, 15, 153–178. https://doi.org/10.3114/fuse.2025.15.07 [Google Scholar] [Crossref]

9. Garcia, R. D., Jara, F. G., Steciow, M. M., & Reissig, M. (2018). Oomycete parasites in freshwater copepods of Patagonia: effects on survival and recruitment. Diseases of Aquatic Organisms, 129(2), 123-134. https://doi.org/10.3354/dao03238 [Google Scholar] [Crossref]

10. Giammarino, A., Bellucci, N., & Angiolella, L. (2024). Galleria mellonella as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages. Pathogens, 13(3), 233. https://doi.org/10.3390/pathogens13030233 [Google Scholar] [Crossref]

11. Gryganskyi, A. P., Hajek, A. E., Voloshchuk, N., Idnurm, A., Eilenberg, J., Manfrino, R. G., Bushley, K. E., Kava, L., Kutovenko, V. B., Anike, F., & Nie, Y. (2024). Potential for use of species in the subfamily Erynioideae for classical biological control. Microorganisms, 12(1), 168. https://doi.org/10.3390/microorganisms12010168 [Google Scholar] [Crossref]

12. Gumus, A., Karagoz, M., Shapiro-Ilan, D., & Hazir, S. (2015). A novel approach to biocontrol: Release of live insect hosts pre-infected with entomopathogenic nematodes. Journal of Invertebrate Pathology, 130, 56-60. [Google Scholar] [Crossref]

13. Hajek, A. E., & St Leger, R. J. (1994). Interactions between fungal pathogens and insect hosts. Annual review of entomology, 39(1), 293-322. [Google Scholar] [Crossref]

14. Hajek, A. E., Scott, K. L., Sanchez-Peña, S. R., Tkaczuk, C., Lovett, B., & Bushley, K. E. (2025). Annotated checklist of arthropod-pathogenic species in the Entomophthoromycotina (Fungi, Zoopagomycota) in North America. MycoKeys, 114, 329–366. https://doi.org/10.3897/mycokeys.114.139257 [Google Scholar] [Crossref]

15. Hoeschle-Zeledon, I., Neuenschwander, P., & Kumar, L. (2013). Regulatory challenges for biological control. CGIAR Systemwide Program on Integrated Pest Management (SP-IPM), International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. [Google Scholar] [Crossref]

16. Joseph, R. A., Rohr, J. R., Blossey, B., Stukenbrock, E. H., & Stadler, M. (2024). Joseph, R. A., Masoudi, A., Valdiviezo, M. J., & Keyhani, N. O. (2024). Discovery of Gibellula floridensis from infected spiders and analysis of the surrounding fungal entomopathogen community. Journal of fungi, 10(10), 694. https://doi.org/10.3390/jof10100694 [Google Scholar] [Crossref]

17. Kaczmarek, A. & Bogus, M. I. (2021). Fungi of entomopathogenic potential in Chytridiomycota and Blastocladiomycota and the fungal allies Oomycota and Microsporidia. IMA Fungus, 12, 20. https://doi.org/10.1186/s43008-021-00074-y [Google Scholar] [Crossref]

18. Kepler, R. M., Rehner, S. A., & Ugine, T. A. (2014). Managing cryptic species: A revised classification of the Beauveria bassiana species complex. PLoS ONE, 9(4), e95357. [Google Scholar] [Crossref]

19. Koller, J., Sutter, L., Gonthier, J., Collatz, J., & Norgrove, L. (2023). Entomopathogens and parasitoids allied in biocontrol: A systematic review. Pathogens, 12(7), 957. [Google Scholar] [Crossref]

20. Kuhnert, E., & Collemare, J. (2022). A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Current Opinion in Microbiology, 69, 102178. https://doi.org/10.1016/j.mib.2022.06.002 [Google Scholar] [Crossref]

21. Lai, J., Peng, W., Song, S., Jiang, J. & Liu, B. (2024). Transcriptome analysis reveals inhibitory mechanisms of Streptomyces against phytopathogenic fungi: Implications for biocontrol. Biological Control, 190, 105321. https://doi.org/10.1016/j.pestbp.2024.105913. [Google Scholar] [Crossref]

22. Ma, C., Hao, L., Li, Z., Ma, Y., & Wang, R. (2025). Preparation and Application of Biocontrol Formulation of Housefly—Entomopathogenic Fungus—Metarhizium brunneum. Veterinary Sciences, 12(4), 308. [Google Scholar] [Crossref]

23. Nam, N. N., Do, H. D. K., Loan Trinh, K. T., & Lee, N. Y. (2023). Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods, 12(11), 2140. https://doi.org/10.3390/foods12112140 [Google Scholar] [Crossref]

24. Nestrud, L. B., & Anderson, R. L. (1994). Aquatic safety of Lagenidium giganteum: effects on freshwater fish and invertebrates. Journal of Invertebrate Pathology, 64(3), 228-233. https://doi.org/10.1006/jipa.1994.1075 [Google Scholar] [Crossref]

25. Pavanelo, D. B., Piloto-Sardiñas, E., Maitre, A., Abuin-Denis, L., Kopáček, P., Cabezas-Cruz, A., & Fogaça, A. C. (2023). Arthropod microbiota: Shaping pathogen establishment and enabling control. Frontiers in Arachnid Science, 2, 1297733. https://doi.org/10.3389/frchs.2023.1297733 [Google Scholar] [Crossref]

26. Qin, Y., Liu, X., Peng, G., Xia, Y., & Cao, Y. (2023). Recent Advancements in Pathogenic Mechanisms, Applications and Strategies for Entomopathogenic Fungi in Mosquito Biocontrol. Journal of Fungi, 9(7), 746. https://doi.org/10.3390/jof9070746 [Google Scholar] [Crossref]

27. Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods (Vol. 10). Springer Science & Business Media. [Google Scholar] [Crossref]

28. Sacco, N. E. & Hajek, A. E. (2023). Diversity and breadth of host specificity among arthropod pathogens in the Entomophthoromycotina: A meta‑analysis. Microorganisms, 11(7), 1658. https://doi.org/10.3390/microorganisms11071658 [Google Scholar] [Crossref]

29. Scholte, E.-J., Knols, B. G. J., Samson, R. A., & Takken, W. (2004). Entomopathogenic fungi for mosquito control: A review. Journal of Insect Science, 4(1), 19. https://doi.org/10.1093/jis/4.1.19 [Google Scholar] [Crossref]

30. Shapiro-Ilan, D. I., & Lewis, E. E. (2024). Formulation and application technology for entomopathogenic nematodes. In Entomopathogenic Nematodes as Biological Control Agents (pp. 201-218). GB: CABI. [Google Scholar] [Crossref]

31. Sila, M. M., Musila, F. M., Weesa, V. W. & Sangilu, I. S. (2023). Evaluation of pathogenicity of entomopathogenic oomycetes Lagenidium giganteum and L. ajelloi against Anopheles gambiae larvae from Kenya. Journal of Parasitology Research, 2023, 2806034. https://doi.org/10.1155/2023/2806034 [Google Scholar] [Crossref]

32. Stulanovic N, Bensaada D, Belde L, Adam D, Hanikenne M, Focant J, Stefanuto P, Rigali S. (2025). Antifungal and other bioactive properties of the volatilome of Streptomyces scabiei 87‑22. Applied and Environmental Microbiology, 91(3), e00863‑25. https://doi.org/10.1128/aem.00863-25 [Google Scholar] [Crossref]

33. Vasquez, Y. M. S.-C., Cueva-Yesquen, L. G., Duarte, A. W. F., Rosa, L. H., Valladão, R., Lopes, A. R., Costa Bonugli-Santos, R., & Oliveira, V. M. d. (2024). Genomics, Proteomics, and Antifungal Activity of Chitinase from the Antarctic Marine Bacterium Curtobacterium sp. CBMAI 2942. International Journal of Molecular Sciences, 25(17), 9250. https://doi.org/10.3390/ijms25179250 [Google Scholar] [Crossref]

34. Wu, S., Mechrez, G., Ment, D., Toews, M. D., Mani, K. A., Feldbaum, R. A., & Shapiro-Ilan, D. I. (2023). Tolerance of Steinernema carpocapsae infective juveniles in novel nanoparticle formulations to ultraviolet radiation. Journal of Invertebrate Pathology, 196, 107851. https://doi.org/10.1016/j.jip.2022.107851 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles