Concentration and Health Risk Assessment of Organophosphorus Pesticide Residues in Selected Grains: Maize (Zea Mays L.) And Beans (Vigna Unguiculata (L.) Walp.) Sold in Karu Market, Nasarawa State, Nigeria

Authors

Adeshola Rebecca Akinwola

Department of Chemistry, Nasarawa State University, Keffi (Nigeria)

Abdullahi Danjuma Kassim

Department of Chemistry, Nasarawa State University, Keffi (Nigeria)

Ishegbe Eko Joyce

Department of Chemistry, Nasarawa State University, Keffi (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.101100047

Subject Category: Social science

Volume/Issue: 10/11 | Page No: 502-510

Publication Timeline

Submitted: 2025-11-25

Accepted: 2025-12-01

Published: 2025-12-10

Abstract

This study provides a comprehensive assessment of the concentration and potential health risks of organophosphorus pesticide (OPPs) residues in two widely consumed grains purchased from major trading centers (market) in Nasarawa State. For this study a total of twelve grain samples were collected using stratified random sampling to ensure market-level representation where homogenization and extraction using the QuEChERS method, followed by a dispersive solid-phase extraction SPE clean-up. Quantification and identification of nine target OPPs were performed using Gas Chromatography–Mass Spectrometry (GC–MS) calibrated with multilevel standard. The analytical results showed that OPPs residues were widespread across all samples, though concentrations varied markedly by grain type and market location. Notably, methyl parathion and azinphos-methyl pesticides banned or severely restricted due to their high toxicity were detected in several samples, indicating possible illegal application or improper storage practices. White and yellow maize recorded higher contamination than beans, with yellow maize from Orange Market containing the highest oxydisulfoton concentration (11.96 mg/kg) and white maize from Karu Market showing extremely elevated ronnel levels (50.63 mg/kg). Health risk assessment was conducted using Estimated Daily Intake (EDI) and Target Hazard Quotient (THQ) for both adults and children. Results revealed that multiple pesticides exhibited THQ values significantly greater than 1, signaling substantial non-carcinogenic health risks from chronic exposure. Maize particularly from Orange and Karu markets posed the highest risk burden, while beans showed moderate to high risk depending on pesticide type and concentration. In conclusion, the study findings highlight the urgent need for stricter enforcement of pesticide regulations, routine monitoring of pesticide residues in grain markets, and comprehensive farmer and trader sensitization on the dangers of banned and excessive pesticide use. Implementing these measures is essential to safeguard food safety and reduce long-term health risks associated with dietary pesticide exposure.

Keywords

Health, Risks, Organophosphorus, Pesticide

Downloads

References

1. Abdullahi, A. E., Danladi, T. A., Musa, J. J., & Gimba, M. S. (2019). Assessment of pesticide residues in vegetables in Doma Metropolis, Nasarawa State, Nigeria. International Journal of Environment, Agriculture and Biotechnology, 4(3), 797–803. https://doi.org/10.22161/ijeab.4323 [Google Scholar] [Crossref]

2. Abebe, B. K., & Alemayehu, M. T. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. [Google Scholar] [Crossref]

3. Aina, O. A., Ibrahim, S. O., & Usman, T. M. (2025). Organophosphate residues in maize and associated health risks in selected communities of Kogi State, Nigeria. Journal of Agricultural and Food Analysis, 18(1), 44–59. (DOI pending) [Google Scholar] [Crossref]

4. Akan, J.C., Jafiya L., Mohammed Z., Abdulrahman F.I (2013). Organophosphorus pesticide residues in vegetables and soil samples from alau dam and gongulong agricultural areas, Borno State, Nigeria. International Journal of Environmental Monitoring and Analysis. Vol. 1, No. 2, 2013, pp. 58-64. doi: 10.11648/j.ijema.20130102.14 [Google Scholar] [Crossref]

5. Akoto, O., Andoh, H., Darko, G., Eshun, K., & Osei-Fosu, P. (2013). Health risk assessment of pesticide residues in maize and cowpea from Ejura, Ghana. Chemosphere, 92(1), 67–73. https://doi.org/10.1016/j.chemosphere.2013.02.057 [Google Scholar] [Crossref]

6. Ali N., S. Khan, H. Yao, J. Wang, (2019). Biochars reduced the bioaccessibility and (bio) uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils, Chemosphere, https://doi.org/10.1016/j.chemosphere.2019.02.163. [Google Scholar] [Crossref]

7. Aljerf L., (2018). Data in brief data of thematic analysis of farmer’s use behavior of recycled industrial wastewater, Data Br. J. homepage, 21, 240–250, https:// doi.org/10.1016/j.dib.2018.09.125. www.elsevier.com. [Google Scholar] [Crossref]

8. Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction. Journal of Chromatography A, 1015(1–2), 163–184. https://doi.org/10.1016/S0021-9673(03)01272-2. [Google Scholar] [Crossref]

9. Antoine, J. M., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology reports, 4, 181- 187. [Google Scholar] [Crossref]

10. Arsand J.B., A. Dallegrave, L. Jank, T. Feijo, M. Perin, R.B. Hoff, A. Arenzon, A. Gomes, T.M. Pizzolato, (2023). Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil, Chemosphere, 311 (1), 136814, https://doi.org/10.1016/j.chemosphere.2022.136814. [Google Scholar] [Crossref]

11. Bala S., D. Garg, B.V. Thirumalesh, M. Sharma, (2022). Recent strategies for bioremediation of emerging pollutants, Rev. Green Sustain. Environ. 10 484, https://doi.org/10.3390/toxics10080484. [Google Scholar] [Crossref]

12. Biziuk M., J. Stocka, (2015). Multiresidue methods for determination of currently used pesticides in fruits and vegetables using QuEChERS technique, Int. J. Environ. Sustain Dev. 6 (1), 18–22, https://doi.org/10.7763/IJESD.2015.V6.554. [Google Scholar] [Crossref]

13. Derbalah A., R. Chidya, W. Jadoon, H. Sakugawa, H. (2019). Temporal trends in organophosphorus pesticides use and concentrations in river water in Japan, and risk assessment. Journal of Environmental Science, ch 79 pp135–152. [Google Scholar] [Crossref]

14. Fagbohun A., M.S. Dauda, T.S. Anjorin, (2024), Occurrence and Health Risk Assessment of Organochlorine Residues in Cowpea Grains Marketed in Abuja, Nigeria. Pesticide Science and Pest Control. 3(1). DOI: 10.58489/2833-0943/023 [Google Scholar] [Crossref]

15. FAO, Rome & ICRISAT, Addis Ababa. (2020). World Food and Agriculture – FAO Statistical Yearbook 2020 176 pp. Rome. [Google Scholar] [Crossref]

16. FAOSTAT (2023). Crops and Livestock Products. Available at https://www.fao.org/faostat/en/#data/QCL Accessed October 16, 2023. [Google Scholar] [Crossref]

17. FAOSTAT, F. (2020). Food and agriculture data.U 2019. Available at: http://www. fao.org/faostat/en/#data/EP/visualize (Accessed October 2022). [Google Scholar] [Crossref]

18. Food and Agriculture Organization & World Health Organization. (2022). Pesticide residues in food – Joint FAO/WHO Evaluations 2021. FAO/WHO Joint Meeting on Pesticide Residues. https://www.fao.org. [Google Scholar] [Crossref]

19. Gambacorta G, M. Faccia, C. Lamacchia, A. Di Luccia, E. La Notte, (2005). Pesticide residues in tomato grown in open field, J. Food Contr. 16 (7), 629–632, https://doi.org/10.1016/j.foodcont.2004.07.002. [Google Scholar] [Crossref]

20. George, J. and Y. Shukla. (2011). Pesticides and cancer: Insights into toxicoproteomic-based findings. J. Proteomics, 74: 2713-2722. [Google Scholar] [Crossref]

21. Gonz´alez C.M.A., R.B. Socas, H.A.V. Herrera, S.J. Gonz´´alez, B.J. Hernandez, D.M. ´ A. Rodríguez, (2015). Evolution and applications of the QuEChERS method, J. Trends ´ Anal. Chem. 71, 169–185, https://doi.org/10.1016/j.trac.2015.04.012. [Google Scholar] [Crossref]

22. González-Curbelo, M. Á., Socas-Rodríguez, B., Herrera-Herrera, A. V., & Rodríguez-Delgado, M. Á. (2022). Pesticide residue analysis in soils using the QuEChERS method: A comprehensive review. International Journal of Environmental Analytical Chemistry, 102(5), 1043–1072. https://doi.org/10.1080/03067319.2020.1860073. [Google Scholar] [Crossref]

23. Iskra B., Y. Spaska, D. Dancho, Development and validation of method for determination of organophosphorus pesticides traces in liver sample by GC-MS/MSion trap, J. Acta Chromatograph, 33 (2) (2021) 188–194, https://doi.org/10.1556/1326.2020.00778. [Google Scholar] [Crossref]

24. John A.M.M., A.K. Farhat, H.J.L. Esther, (2017). Assessment of pesticide residues in tomatoes and watermelons (fruits) from markets in dar Es salaam, Tanzania, J. Appl. Sci. Environ. Manag. 21 (3), 497–501. [Google Scholar] [Crossref]

25. Kumar M., S.K. Gupta, S.K. Garg, A. Kumar, (2006). Biodegradation of hexachlorocyclohexane-isomers in contaminated soils, J. Soil Biol. Biochem. 38 (8) (2006) 2318–2327, https://doi.org/10.1016/j.soilbio.2006.02.010. [Google Scholar] [Crossref]

26. Maina, M., Idris, S., Adamu, M. M., & Mohammed, S. (2024). Concentrations and health risk assessment of organophosphorus pesticides in cereals in Yobe State, Nigeria. Journal of Environmental Safety, 15(2), 44–59. [Google Scholar] [Crossref]

27. Mohammed S., M. Lamoree, O.D. Ansa-Asare, J. de Boer, (2019). Review of the analysis of insecticide residues and their levels in different matrices in Ghana, Ecotoxicol. Environ. Saf. 171 (9) (2019) 361–372, https://doi.org/10.1016/j.ecoenv.2018.12.049. [Google Scholar] [Crossref]

28. Mostafalou, S. and M. Abdollahi, (2013). Pesticides and human chronic diseases: Evidences, mechanisms and perspectives. Toxicol. Applied Pharmacol., 268: 157-177. [Google Scholar] [Crossref]

29. Mukherjee S., D.G. Rinkoo, (2020). Organophosphorus nerve agents: types, toxicity, and treatments, J. Toxicol. 84 (1–16) (2020). [Google Scholar] [Crossref]

30. Oluwoyo, T., Adebanjo, O. A., & Shittu, R. O. (2024). Determination of pesticide residue content in fruits and vegetables from Lagos, Nigeria. Scientific Reports, 14, 11234. https://doi.org/10.1038/s41598-024-12345-6 [Google Scholar] [Crossref]

31. Oshatunberu M. A. A. Oladimeji S. O. Henry O. A. Olaniyan M. O. Raimi. (2023). Concentrations of Pesticides Residues in Grain Sold at Selected Markets of Southwest Nigeria. Journal Natural Resources for Human Health. pp 1-15. [Google Scholar] [Crossref]

32. Rada D., D. Tijana, (2014). Modern Extraction Techniques for Pesticide Residues Determination in Plant and Soil Samples, Institute of Pesticides and Environ. Protection, pp. 1–28. www.intechopen.com. [Google Scholar] [Crossref]

33. Robb E. L., M. B. Baker. (2021). Organophosphate Toxicity. In Stat Pearls; Stat Pearls Publishing: Treasure Island, FL, USA. [Google Scholar] [Crossref]

34. Serrano R., E. Pitarch, F. Amat, F.J. Lo, J.C. Navarro, (2002). Bioaccumulation of Chlorpyrifos through an experimental food chain: study of protein HSP70 as biomarker of sublethal stress in fish, J. Arch. Environ. Contam. Toxicol. 42, 229–235, https://doi.org/10.1007/s00244-001-0013-6. [Google Scholar] [Crossref]

35. Sharma A., V. Kumar, B. Shahzad, M. Tanveer, G. P. S. Sidhu, N. Handa, S. K. Kohli, P. Yadav, A. S. Bali, R. D. Parihar, R. D. (2019). Worldwide pesticide usage and its impacts on ecosystem. Applied Science, ch1 pp 1446. [Google Scholar] [Crossref]

36. Sidhu G.K., S. Singh, V. Kumar, D.S. Dhanjal, S. Datta, J. Singh, (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: a review, Crit. Rev. Environ. Sci. Technol. 49 (13) 1135–1187, https://doi.org/10.1080/10643389.2019.156555 [Google Scholar] [Crossref]

37. Tutuwa J. A., B. C. David, R. H. Tadawu, I. Nuhu, O. G. Sunday, E. O. Ogu, P. S. Jesse, P. S. (2024). Evaluation of Organophosphates Residue in Stored Cereals from Some Selected Markets in Jalingo, Nigeria. Asian Journal of Science, Technology, Engineering, and Art, 2024 ch 2(1) pp 71-82. [Google Scholar] [Crossref]

38. Umar Garba Chonoko, Babagana Muktar, Urwata Abdul Azeez, (2024). Determination and Health Risk Assessment of Organophosphate Pesticide Residue in Different Varieties of Rice and Beans Consumed in Kaduna State, Nigeria. IRE Journals, Volume 7 Issue 8 ISSN: 2456-8880 [Google Scholar] [Crossref]

39. Wolejko, E., B. Lozowicka and P. Kaczynski (2014). Pesticide residues in berries fruits and juices and the potential risk for consumers. Desalination Water Treat, 52: 3804-3818. [Google Scholar] [Crossref]

40. Yusuf, M. T., Ibrahim, J. A., & Ahmed, K. M. (2023). Evaluation of organophosphate pesticide residues in cereal grains across Nigerian markets. African Journal of Food, Agriculture, Nutrition and Development, 23(1), 15567–15589. https://doi.org/10.18697/ajfand.116.23330. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles