Cytotoxity Evaluation of 1, 3, 5 Trizines Derivatives with Substitutued Amines
Authors
Department of Chemistry, Organic Synthesis Division, Government Vidarbha Institute of Science and Humanities Amravati (India)
Department of Chemistry, Organic Synthesis Division, Government Vidarbha Institute of Science and Humanities Amravati (India)
Article Information
DOI: 10.51584/IJRIAS.2025.1010000089
Subject Category: Chemistry
Volume/Issue: 10/10 | Page No: 1066-1071
Publication Timeline
Submitted: 2025-10-25
Accepted: 2025-10-31
Published: 2025-11-10
Abstract
The present study focuses on the cytotoxic evaluation of newly synthesized 1,3,5-triazine derivatives containing substituted amines. Triazine derivatives are recognized for their diverse biological activities, including antimicrobial, antiviral, antifungal, and anticancer properties. Considering their pharmacological potential, a novel series of 1,3,5-triazine derivatives was synthesized and subjected to cytotoxic screening. The cytotoxic activity was assessed against selected human cancer cell lines using the MTT assay method. The results revealed that several synthesized compounds exhibited significant cytotoxic effects in a concentration-dependent manner, comparable to standard reference drugs. Structural variations in the substituted amines were found to influence the degree of cytotoxicity, suggesting a structure-activity relationship. Overall, the findings demonstrate that some of the synthesized triazine derivatives possess promising cytotoxic potential and may serve as lead compounds for the development of new anticancer agents.
Keywords
1,3,5-Triazine derivatives, substituted amines
Downloads
References
1. Ashour, H. M., Shaaban, O. G., Rizk, O. H., & El-Ashmawy, I. M. (2013). European Journal of Medicinal Chemistry, 62, 341-351. [Google Scholar] [Crossref]
2. Baliani, A., Bueno, G. J., Stewart, M. L., Yardlev, V., Brun, R., Barrett, M. P., & Gilbert, I. H. (2005). Journal of Medicinal Chemistry, 48(17), 5570-5579. [Google Scholar] [Crossref]
3. Ban, K., Duffy, S., & Khakham, Y. (2010). Bioorganic & Medicinal Chemistry Letters, 20(20), 6024-6029. [Google Scholar] [Crossref]
4. Bondock, S., Rabie, R., Etman, H. A., & Fadda, A. A. (2008). European Journal of Medicinal Chemistry, 43(10), 2122-2129. [Google Scholar] [Crossref]
5. Cirrincione, G., Almerico, A. M., Barraja, P., Diana, P., Lauria, A., Passannanti, A., Musiu, C., Pani, A., Murtas, P., Minnei, C., Marongiu, M. E., & La Colla, P. (1999). Journal of Medicinal Chemistry, 42(14), 2561-2568. [Google Scholar] [Crossref]
6. Diana, P., Barraja, P., & Lauria, A. (2002). European Journal of Medicinal Chemistry, 37(3), 267-272. [Google Scholar] [Crossref]
7. El-Gendy, Z., Morsy, J. M., Allimony, H. A., Abdel-Monem, W. R., & AbdelRahman, R. M. (2003). Phosphorus, Sulfur, and Silicon and the Related Elements, 178(9), 2055-2071. [Google Scholar] [Crossref]
8. Hynes, J., Kanner, S. B., Yang, X., Tokarski, J. S. [Google Scholar] [Crossref]
9. Inca, S. Z., Selma, S., Semra, C., & Kevser, E (2006). Bioorganic & Medicinal Chemistry, 14(23), 8582-8589. [Google Scholar] [Crossref]
10. Jeong, L. S., Zhao, L. X., Choi, W. J., Pal, S., Park, Y. H., Lee, S. K., Chun, M. W., Lee, Y. B., Ahn, C. H., & Moon, H. R. (2007). Nucleosides, Nucleotides and Nucleic Acids, 26(6), 713-716. [Google Scholar] [Crossref]
11. Kimura, H., Katoh, T., Kajimoto, T., Node, M., Hisaki, M., Sugimoto, Y., Majima, T., Uehara, Y., & Yamori, T. (2006). Anticancer Research, 26(1A), 91-97. [Google Scholar] [Crossref]
12. Kumar, A., Srivastava, K., Kumar, S. R., Puri, S. K., & Chauhan, P. M. S. (2008). Bioorganic & Medicinal Chemistry Letters, 18(24), 6530-6533. [Google Scholar] [Crossref]
13. Li, C., Sridhara, M. B., Rakesh, K. P., Vivek, H. K., Manukumar, H. M., Shantharam, C. S., & Qin, H. L. (2018). Bioorganic Chemistry, 81, 389-395. [Google Scholar] [Crossref]
14. Lunardi, F., Guzela, M., Rodrigues, A. T., Correa, R., Eger-Mangrich, I., Steindel, M., Grizard, E. C., Assreuy, J., Calixto, J. B., & Santos, A. R. S. (2003). Antimicrobial Agents and Chemotherapy, 47(4), 1449-1451. [Google Scholar] [Crossref]
15. M3, Schieven, G. L., Dyckman, A. J., Lonial, H., Zhang, R., Sack, J. S., & Lin, S. (2008). Journal of Medicinal Chemistry, 51(1), 4-16. [Google Scholar] [Crossref]
16. Melato, S., Prosperi, D., Coghi, P., Basilico, N., & Monti, D. (2008). Medicinal Chemistry, 3(10), 873-876. [Google Scholar] [Crossref]
17. Menicagli, R., Samaritani, S., Signore, G., Vaglini, F., & Via, L. D. (2004). Journal of Medicinal Chemistry, 47(19), 4649-4652. [Google Scholar] [Crossref]
18. Poyser, J. P., Telford, B., Timms, D., Block, M. H., & Neil, J. H. (1999). WO/01442. [Google Scholar] [Crossref]
19. Ravindar, L., Bukhari, S. N. A., Rakesh, K. P., Manukumar, H. M., Vivek, H. K., Mallesha, N., Xie, Z. Z., & Qin, H. L. (2018). Bioorganic Chemistry, 81, 107-118. [Google Scholar] [Crossref]
20. Shah, D. R., Modh, R. P., & Chikhalia, K. H. (2014). Future Medicinal Chemistry, 6(4), 463-477. [Google Scholar] [Crossref]
21. Sztanke, K., Markowski, W., Świeboda, R., & Polak, B. (2010). European Journal of Medicinal Chemistry, 45(6), 2644-2649. [Google Scholar] [Crossref]
22. Sztanke, K., Pasternak, K., Rzymowska, J., Sztanke, M., & Kandefer-Szerszeń, M. (2008). European Journal of Medicinal Chemistry, 43(5), 1085-1094. [Google Scholar] [Crossref]
23. Viswanatha, G. L., Akinapally, N., Shylaja, H., Nandakumar, K., Srinath, R., & Janardhanan, S. (2011). Iranian Journal of Pharmacology and Therapeutics, 10(1), 31-38. [Google Scholar] [Crossref]
24. Wang, M., Rakesha, K. P., Leng, J., Fang, W. Y., Ravindar, L., Gowda, D. C., & Qin, H. L. (2018). Bioorganic Chemistry, 76, 113-129. [Google Scholar] [Crossref]
25. Xiong, Y. Z., Chen, F. E., Balzarini, J., De Clercq, E., & Pannecouque, C. (2008). European Journal of Medicinal Chemistry, 43(6), 1230-1236. [Google Scholar] [Crossref]
26. Xu, M., Wu, P., Shen, F., Ji, J., & Rakesh, K. P. (2019). Bioorganic Chemistry, 91, 103133. [Google Scholar] [Crossref]
27. Yaguchi, S., Fukui, Y., & Koshimizu, I. (2006). Journal of the National Cancer Institute, 98(8), 545-556. [Google Scholar] [Crossref]
28. Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B., & Khazarmi, A. (1999). Journal of Antimicrobial Chemotherapy, 43(6), 793-803. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications