Green Synthesis of Zinc Nanoparticles Using Phaseolus vulgaris Extract: Evaluation of Antimicrobial, Anticancer, and in Silico Properties

Authors

Nishant Solanki

Department of Biotechnology, Mehsana Urban Institute of Sciences, Faculty of Science, Ganpat University, Mehsana - Gandhinagar Highway, Ganpat Vidhyanagar – 384012 Gujarat (India)

Dr. Sandesh Chibber

Assistant Professor Department of Biotechnology, Mehsana Urban Institute of Sciences, Faculty of Science, Ganpat University, Mehsana - Gandhinagar Highway, Ganpat Vidhyanagar – 384012 Gujarat (India)

Article Information

DOI: 10.51584/IJRIAS.2025.101100056

Subject Category: Biotechnology

Volume/Issue: 10/11 | Page No: 586-596

Publication Timeline

Submitted: 2025-11-25

Accepted: 2025-12-02

Published: 2025-12-12

Abstract

This study reports the green synthesis of zinc nanoparticles (ZnNPs) using fresh Phaseolus vulgaris leaf extract as a natural reducing and stabilizing agent. A visible color change and a UV–Vis absorption peak at ~340 nm confirmed ZnNP formation. SEM and TEM analyses revealed predominantly cubical nanoparticles with an average size of 67 nm. DLS showed a hydrodynamic diameter of 148.7 nm and a zeta potential of –21 mV, indicating good colloidal stability. The ZnNPs exhibited strong antimicrobial activity against Escherichia coli, Bacillus cereus, and Staphylococcus aureus, with effects dependent on concentration and exposure time. Cytotoxicity assays on MCF-7 breast cancer cells showed dose-dependent inhibition, accompanied by morphological changes such as membrane blebbing and nuclear fragmentation. Molecular docking studies indicated interaction of ZnNPs with Human Serum Albumin (HSA) near Subdomain IB, involving residues like Arg-196 and His105, with a binding energy of –1.64 kcal/mol. These results suggest ZnNPs have potential for biomedical applications.

Keywords

Zinc nanoparticles; Green synthesis; Phaseolus vulgaris; UV–Vis spectroscopy; Scanning Electron Microscopy (SEM); Transmission Electron Microscopy (TEM); Dynamic Light Scattering) DLS.

Downloads

References

1. N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, “ZnO nano particles via Moringa oleifera green synthesis: Physical properties & mechanism of formation,” Appl Surf Sci, vol. 406, pp. 339–347, Jun. 2017, doi: 10.1016/j.apsusc.2017.01.219. [Google Scholar] [Crossref]

2. M. I. Din et al., “Green synthesis of zinc ferrite nanoparticles for photocatalysis of methylene blue,” Int J Phytoremediation, vol. 22, no. 13, pp. 1440–1447, Nov. 2020, doi: 10.1080/15226514.2020.1781783. [Google Scholar] [Crossref]

3. A. Gómez-Zavaglia, L. Cassani, E. M. Hebert, and E. Gerbino, “Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics,” Food Research International, 2022, doi: 10.1016/j.foodres.2022.111097. [Google Scholar] [Crossref]

4. S. Raut, P. V Thorat, and R. Thakre, “Green Synthesis of Zinc Oxide (ZnO) Nano particles Using Ocimum Tenuiflorum Leaves,” 2013. [Online]. Available: www.ijsr.net [Google Scholar] [Crossref]

5. M. N. Alharthi, I. Ismail, S. Bellucci, and M. A. Salam, “Green synthesis of zinc oxide nanoparticles by Ziziphus jujuba leaves extract: Environmental application, kinetic and thermodynamic studies,” Journal of Physics and Chemistry of Solids, vol. 158, Nov. 2021, doi: 10.1016/j.jpcs.2021.110237. [Google Scholar] [Crossref]

6. P. Perumal et al., “Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/S41598-02452217-X. [Google Scholar] [Crossref]

7. D. Suresh, P. C. Nethravathi, Udayabhanu, H. Rajanaika, H. Nagabhushana, and S. C. Sharma, “Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities,” Mater Sci Semicond Process, vol. 31, pp. 446– 454, 2015, doi: 10.1016/j.mssp.2014.12.023. [Google Scholar] [Crossref]

8. F. Norouzi Jobie, M. Ranjbar, A. Hajizadeh Moghaddam, and M. Kiani, “Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent,” Advanced Powder Technology, vol. 32, no. 6, pp. 2043–2052, 2021, doi: https://doi.org/10.1016/j.apt.2021.04.014. [Google Scholar] [Crossref]

9. H. Yazid, R. Adnan, S. A. Hamid, and M. A. Farrukh, “Synthesis and characterization of gold nanoparticles supported on zinc oxide via the deposition-precipitation method,” Turk J Chem, vol. 34, no. 4, pp. 639–650, Aug. 2010, doi: 10.3906/kim-0912-379. [Google Scholar] [Crossref]

10. M. J. Klink, N. Laloo, A. Taka, V. Pakade, M. Monapathi, and J. Modise, “Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles against Selected Waterborne Bacterial and Yeast Pathogens,” Molecules, vol. 27, no. 11, Jun. 2022, doi: 10.3390/molecules27113532. [Google Scholar] [Crossref]

11. M. J. Klink, N. Laloo, A. Taka, V. Pakade, M. Monapathi, and J. Modise, “Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles against Selected Waterborne Bacterial and Yeast Pathogens,” Molecules, vol. 27, no. 11, Jun. 2022, doi: 10.3390/molecules27113532. [Google Scholar] [Crossref]

12. T. Karan, R. Erenler, and B. Bozer, “Synthesis and characterization of silver nanoparticles using curcumin:cytotoxic, apoptotic, and necrotic effects on various cell lines,” Zeitschrift für Naturforschung C, 2022, doi: 10.1515/znc-2021-0298. [Google Scholar] [Crossref]

13. N. Asif, M. Amir, and T. Fatma, “Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles.,” Bioprocess Biosyst Eng, 2023, doi: 10.1007/s00449-02302886-1. [Google Scholar] [Crossref]

14. N. Hutchinson et al., “Green synthesis of gold nanoparticles using upland cress and their biochemical characterization and assessment,” Nanomaterials, vol. 12, no. 1, Jan. 2022, doi: 10.3390/nano12010028. [Google Scholar] [Crossref]

15. R. S. Dubey, Y. B. R. D. Rajesh, and M. A. More, “Synthesis and Characterization of SiO2 Nanoparticles via Sol-gel Method for Industrial Applications,” in Materials Today: Proceedings, Elsevier Ltd, 2015, pp. 3575–3579. doi: 10.1016/j.matpr.2015.07.098. [Google Scholar] [Crossref]

16. A. K. Jha, S. Zamani, and A. Kumar, “Green synthesis and characterization of silver nanoparticles using Pteris vittata extract and their therapeutic activities.,” Biotechnol Appl Biochem, 2021, doi: [Google Scholar] [Crossref]

17. 10.1002/bab.2235. [Google Scholar] [Crossref]

18. A. C. Pereira, A. E. F. Oliveira, M. A. C. Resende, and L. F. Ferreira, “Investigation of the Gold Nanoparticles Synthesis, Mechanism and Characterization Using the Turkevich Method,” May 22, 2023. doi: 10.20944/preprints202305.1494.v1. [Google Scholar] [Crossref]

19. S. Bhosale, N. Kannor, N. Shinde, and N. Sahane, “Recent Advances in Zinc Oxide Nanoparticles: Synthesis Methods, Characterization Techniques, and Emerging Applications,” Current Catalysis, vol. 13, no. 2, Jan. 2025, doi: 10.2174/0122115447323237241016100917. [Google Scholar] [Crossref]

20. H. Y. Rohana, A. Shafida, A. Hamid, and M. A. Farrukh, “Synthesis and characterization of gold nanoparticles supported Synthesis and characterization of gold nanoparticles supported on zinc oxide via the deposition-precipitation method on zinc oxide via the deposition-precipitation method,” Turk J Chem, vol. 34, no. 4, pp. 1–1, doi: 10.3906/kim-0912-379. [Google Scholar] [Crossref]

21. G. Pal, P. Rai, and A. Pandey, “Green synthesis of nanoparticles: A greener approach for a cleaner future,” in Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, 2018, pp. 1–26. doi: 10.1016/B978-0-08-102579-6.00001-0. [Google Scholar] [Crossref]

22. P. Elia, R. Zach, S. Hazan, S. Kolusheva, Z. Porat, and Y. Zeiri, “Green synthesis of gold nanoparticles using plant extracts as reducing agents,” Int J Nanomedicine, vol. 9, no. 1, pp. 4007–4021, Aug. 2014, doi: 10.2147/IJN.S57343. [Google Scholar] [Crossref]

23. F. Khan et al., “Prospects of algae-based green synthesis of nanoparticles for environmental applications,” Chemosphere, vol. 293, p. 133571, Apr. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.133571. [Google Scholar] [Crossref]

24. Suryakant, N. Kumar, H. Tripathi, S. Kumar, and S. Bhardwaj, “Sol-gel synthesis of Tin oxide nanoparticles and their characterizations,” Mater Today Proc, Jun. 2023, doi: 10.1016/J.MATPR.2023.06.072. [Google Scholar] [Crossref]

25. D. Das et al., “Synthesis and physicochemical characterization of mesoporous sio2 nanoparticles,” J Nanomater, vol. 2014, 2014, doi: 10.1155/2014/176015. [Google Scholar] [Crossref]

26. Z. P. Guven et al., “Synthesis and Characterization of Amphiphilic Gold Nanoparticles.,” Journal of Visualized Experiments, 2019, doi: 10.3791/58872. [Google Scholar] [Crossref]

27. S. Nazma, T. Sudha, D. P. Biradar, P. U. Krishnaraj, S. S. Chandrashekhar, and H. Ravikumar, “Biosynthesis and Characterization of Zinc Nanoparticles Using Strains of Pseudomonas and Actinobacteria,” J Adv Biol Biotechnol, vol. 27, no. 9, pp. 1352–1365, Sep. 2024, doi: [Google Scholar] [Crossref]

28. 9734/jabb/2024/v27i91408. [Google Scholar] [Crossref]

29. M. I. Din and R. Rehan, “Synthesis, Characterization, and Applications of Copper Nanoparticles,” Jan. 02, 2017, Taylor and Francis Inc. doi: 10.1080/00032719.2016.1172081. [Google Scholar] [Crossref]

30. A. A. A. Aljabali et al., “Synthesis, Characterization, and Assessment of Anti-Cancer Potential of ZnO [Google Scholar] [Crossref]

31. Nanoparticles in an In Vitro Model of Breast Cancer,” Molecules, vol. 27, no. 6, Mar. 2022, doi: 10.3390/MOLECULES27061827. [Google Scholar] [Crossref]

32. T. M. Abdelghany et al., “Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms,” Biomass Convers Biorefin, vol. 13, no. 1, pp. 417–430, 2023, doi: 10.1007/s13399-022-03412-1. [Google Scholar] [Crossref]

33. J. Ashwini, T. R. Aswathy, A. B. Rahul, G. M. Thara, and A. S. Nair, “Synthesis and characterization of zinc oxide nanoparticles using acacia caesia bark extract and its photocatalytic and antimicrobial activities,” Catalysts, vol. 11, no. 12, Dec. 2021, doi: 10.3390/CATAL11121507. [Google Scholar] [Crossref]

34. M. S. Kiran, C. R. Rajith Kumar, U. R. Shwetha, H. S. Onkarappa, V. S. Betageri, and M. S. Latha, “Green synthesis and characterization of gold nanoparticles from Moringa oleifera leaves and assessment of antioxidant, antidiabetic and anticancer properties,” Chemical Data Collections, vol. 33, p. 100714, 2021, doi: https://doi.org/10.1016/j.cdc.2021.100714. [Google Scholar] [Crossref]

35. K. Pushparaj et al., “Green synthesis, characterization of silver nanoparticles using aqueous leaf extracts of Solanum melongena and in vitro evaluation of antibacterial, pesticidal and anticancer activity in human MDA-MB-231 breast cancer cell lines,” J King Saud Univ Sci, vol. 35, no. 5, Jul. 2023, doi: 10.1016/j.jksus.2023.102663. [Google Scholar] [Crossref]

36. S. Lal et al., “Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from [Google Scholar] [Crossref]

37. Myrica esculenta fruits extract,” Inorg Chem Commun, vol. 141, Jul. 2022, doi: [Google Scholar] [Crossref]

38. 1016/j.inoche.2022.109518. [Google Scholar] [Crossref]

39. S. Irshad, M. Riaz, A. Anjum, S. Sana, R. Saleem, and A. Shaukat, “BIOSYNTHESIS OF ZnO NANOPARTICLES USING OCIMUM BASILICUM AND DETERMINATION OF ITS ANTIMICROBIAL ACTIVITY,” J Anim Plant Sci, doi: 10.36899/japs.2020.1.0021. [Google Scholar] [Crossref]

40. H. Jan et al., “A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications,” Journal of Saudi Chemical Society, vol. 25, no. 8, Aug. 2021, doi: 10.1016/J.JSCS.2021.101297. [Google Scholar] [Crossref]

41. J. J. Xu, W. C. Zhang, Y. W. Guo, X. Y. Chen, and Y. N. Zhang, “Metal nanoparticles as a promising technology in targeted cancer treatment,” Drug Deliv, vol. 29, no. 1, pp. 664–678, 2022, doi: [Google Scholar] [Crossref]

42. 1080/10717544.2022.2039804. [Google Scholar] [Crossref]

43. J. J. Xu, W. C. Zhang, Y. W. Guo, X. Y. Chen, and Y. N. Zhang, “Metal nanoparticles as a promising technology in targeted cancer treatment,” Drug Deliv, vol. 29, no. 1, pp. 664–678, 2022, doi: [Google Scholar] [Crossref]

44. 1080/10717544.2022.2039804. [Google Scholar] [Crossref]

45. J. Naik and M. David, “Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity,” Particulate Science and Technology, vol. 41, no. 6, pp. 761–773, Aug. 2023, doi: 10.1080/02726351.2022.2141668. [Google Scholar] [Crossref]

46. K. K. Bharadwaj et al., “Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics,” Molecules, 2021, doi: 10.3390/molecules26216389. [Google Scholar] [Crossref]

47. R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, and G. Singaravelu, “Green synthesis of gold nanoparticles and their anticancer activity,” Cancer Nanotechnol, vol. 4, no. 4–5, pp. 91–98, Aug. 2013, doi: 10.1007/s12645-013-0040-9. [Google Scholar] [Crossref]

48. S. N. Omer et al., “Molecular docking insights: interaction mechanisms of green-synthesized iron oxide nanoparticles with bacterial proteins,” Microb Pathog, vol. 205, Aug. 2025, doi: 10.1016/j.micpath.2025.107704. [Google Scholar] [Crossref]

49. M. Kciuk et al., “Computational Bioprospecting Guggulsterone against ADP Ribose Phosphatase of SARS-CoV-2,” Molecules, vol. 27, no. 23, Dec. 2022, doi: 10.3390/molecules27238287. [Google Scholar] [Crossref]

50. B. E. Sadoq et al., “Metal and Metal Oxide Nanoparticles: Computational Analysis of Their Interactions and Antibacterial Activities Against Pseudomonas aeruginosa,” Bionanoscience, vol. 15, no. 1, Mar. 2025, doi: 10.1007/s12668-024-01625-4. [Google Scholar] [Crossref]

51. A. Mohammadpour et al., “Green synthesis, characterization, and application of Fe3O4 nanoparticles for methylene blue removal: RSM optimization, kinetic, isothermal studies, and molecular simulation,” Environ Res, vol. 225, May 2023, doi: 10.1016/j.envres.2023.115507. [Google Scholar] [Crossref]

52. D. Rajan, R. Rajamanikandan, and M. Ilanchelian, “Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery,” J Mol Liq, vol. 377, May 2023, doi: [Google Scholar] [Crossref]

53. 1016/j.molliq.2023.121541. [Google Scholar] [Crossref]

54. S. Parveen, M. Ikram, A. Haider, I. Shahzadi, A. Ul-Hamid, and A. A. A. Hafez, “Optimized AgBr/PVPFe2O3 Nanostructures for Effective Catalytic and Biological Activities; Computational Insights,” J Inorg Organomet Polym Mater, 2025, doi: 10.1007/s10904-025-03835-z. [Google Scholar] [Crossref]

55. M. Khatami, H. Q. Alijani, H. Heli, and I. Sharifi, “Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency,” Ceram Int, vol. 44, no. 13, pp. 15596–15602, Sep. 2018, doi: 10.1016/j.ceramint.2018.05.224. [Google Scholar] [Crossref]

56. K. Singh, J. Singh, and M. Rawat, “Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye,” SN Appl Sci, vol. 1, no. 6, Jun. 2019, doi: 10.1007/s42452-019-0610-5. [Google Scholar] [Crossref]

57. J. Chaudhary, V. Khoker, and G. Tailor, “SYNTHESIS AND CHARACTERIZATION OF ZINC [Google Scholar] [Crossref]

58. NANOPARTICLES USING THERMOSETTING RESINS,” Journal of Population Therapeutics and Clinical Pharmacology, Apr. 2024, doi: 10.53555/jptcp.v31i4.5374. [Google Scholar] [Crossref]

59. S. Akhter et al., “Cancer Targeted Metallic Nanoparticle: Targeting Overview, Recent Advancement and Toxicity Concern,” 2011. [Google Scholar] [Crossref]

60. R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, and G. Singaravelu, “Green synthesis of gold nanoparticles and their anticancer activity,” Cancer Nanotechnol, vol. 4, no. 4–5, pp. 91–98, Aug. 2013, doi: 10.1007/s12645-013-0040-9. [Google Scholar] [Crossref]

61. J. Conde, G. Doria, and P. Baptista, “Noble Metal Nanoparticles Applications in Cancer,” J Drug Deliv, vol. 2012, pp. 1–12, Oct. 2012, doi: 10.1155/2012/751075. [Google Scholar] [Crossref]

62. A. F. Burlec et al., “Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles,” Pharmaceuticals, vol. 16, no. 10, Oct. 2023, doi: 10.3390/PH16101410. [Google Scholar] [Crossref]

63. M. G. Heinemann, C. H. Rosa, G. R. Rosa, and D. Dias, “Biogenic synthesis of gold and silver nanoparticles used in environmental applications: A review,” Trends in Environmental Analytical Chemistry, vol. 30, Jun. 2021, doi: 10.1016/J.TEAC.2021.E00129. [Google Scholar] [Crossref]

64. I. P. Omoregie et al., “Application of Mushrooms in the Bioremediation of Environmental Pollutants,” in Mushroom Biotechnology for Improved Agriculture and Human Health, 2025, pp. 1–28. doi: https://doi.org/10.1002/9781394212699.ch1. [Google Scholar] [Crossref]

65. A. Kwatra et al., “Green ZnO nanoparticle synthesis using Tamarindus indica and application as a potent antibacterial and anticancer agent,” Sustainable Chemistry for Climate Action, vol. 6, p. 100083, Jun. 2025, doi: 10.1016/J.SCCA.2025.100083. [Google Scholar] [Crossref]

66. R. Rajkumar, G. Ezhumalai, and M. Gnanadesigan, “A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity,” Environ Technol Innov, vol. 21, Feb. 2021, doi: 10.1016/J.ETI.2020.101282. [Google Scholar] [Crossref]

67. L. Hernández-Morales et al., “Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application,” Appl Surf Sci, vol. 489, pp. 952–961, Sep. 2019, doi: 10.1016/j.apsusc.2019.06.031. [Google Scholar] [Crossref]

68. F. Zanjanchi, “Correction: A Computational Study on Iron Oxide Magnetite Nanoparticles As Adsorbents of Anionic Pollutants (Journal of Electronic Materials, (2022), 51, 5, (2178-2191), 10.1007/s11664-02209450-9),” May 01, 2022, Springer. doi: 10.1007/s11664-022-09541-7. [Google Scholar] [Crossref]

69. F. Zanjanchi, “A Computational Study on Iron Oxide Magnetite Nanoparticles As Adsorbents of Anionic Pollutants,” J Electron Mater, vol. 51, no. 5, pp. 2178–2191, May 2022, doi: 10.1007/s11664-022-094509. [Google Scholar] [Crossref]

70. S. A. Mousa, D. A. Wissa, H. H. Hassan, A. A. Ebnalwaled, and S. A. Khairy, “Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/S41598-024-66975-1. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles