Hydroxyapatite-Graphene Oxide Nanocomposite for Wastewater Treatment

Authors

Devadarshini k

PG and Research Department of Biotechnology Women’s Christian College (An Autonomous Institution Affiliated to the University of Madras) (Chennai)

Priya R Iyer

PG and Research Department of Biotechnology Women’s Christian College (An Autonomous Institution Affiliated to the University of Madras) (Chennai)

Article Information

DOI: 10.51584/IJRIAS.2025.101100018

Subject Category: Biology

Volume/Issue: 10/11 | Page No: 199-209

Publication Timeline

Submitted: 2025-11-21

Accepted: 2025-11-28

Published: 2025-12-04

Abstract

This study presents an eco-friendly and cost-effective approach for the synthesis of hydroxyapatite (HAp) from quail eggshell waste, further functionalized with graphene oxide (GO) nanoparticles, for the treatment of industrial wastewater. Quail eggshells, rich in calcium carbonate, serve as a sustainable calcium source for hydroxyapatite production via a wet chemical precipitation method. The synthesized HAp was subsequently combined with GO to enhance its surface area, adsorption capacity, and reactivity toward pollutants. The composite material (HAp/GO) was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) to evaluate its morphology, functional groups, and crystalline structure, respectively. SEM images revealed a porous structure with uniform dispersion of GO sheets on the HAp surface. FTIR spectra confirmed the presence of characteristic phosphate, hydroxyl, and carbonyl groups, indicating successful synthesis and functionalization. XRD analysis showed well-defined peaks corresponding to the crystalline phases of hydroxyapatite and GO. The HAp/GO composite demonstrated effective adsorption and removal of heavy metals and organic pollutants from industrial wastewater samples, highlighting its potential as a novel, sustainable adsorbent material for environmental remediation applications.

Keywords

The growing consumption of eggs and egg-derived products

Downloads

References

1. Kareem, Z., & Eyiler, E. (2024). Synthesis of hydroxyapatite from eggshells via wet chemical precipitation: a review. RSC advances, 14(30), 21439-21452. [Google Scholar] [Crossref]

2. Kala, K. (2022). Evaluating synthesis of Novel Hydroxyapatite from Egg Shell Compared with Chemically Synthesized HAP for Orthopedic application. Journal of Pharmaceutical Negative Results, 13. [Google Scholar] [Crossref]

3. Pu'ad, N. M., Alipal, J., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2021). Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Materials Today: Proceedings, 42, 172-177. [Google Scholar] [Crossref]

4. Sujiono, E. H., Zurnansyah, Z. D., Dahlan, M. Y., Amin, B. D., & Samnur, A. J. (2020). Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon 6: e04568. [Google Scholar] [Crossref]

5. Hashim, N. C., Frankel, D., & Nordin, D. (2019). Graphene oxide-modified hydroxyapatite nanocomposites in biomedical applications: A review. Ceramics-Silikaty. [Google Scholar] [Crossref]

6. Hassan, M. A., Mohammad, A. M., Salaheldin, T. A., & El-Anadouli, B. E. (2018). A promising hydroxyapatite/graphene hybrid nanocomposite for methylene blue dye’s removal in wastewater treatment. International Journal of Electrochemical Science, 13(8), 8222-8240. [Google Scholar] [Crossref]

7. Ahmed, N., Kamil, F., Hasso, A., Abduljawaad, A., Saleh, T. & Mahmood, S. (2022). Calcium carbonate nanoparticles of quail’s egg shells: Synthesis and characterizations. Journal of the Mechanical Behavior of Materials, 31(1), 1-7. [Google Scholar] [Crossref]

8. Nikam, A. P., Ratnaparkhiand, M. P., & Chaudhari, S. P. (2014). Nanoparticles–an overview. International journal of research and development in pharmacy & life sciences, 3(5), 1121-1127. [Google Scholar] [Crossref]

9. Rhazouani, A., Gamrani, H., El Achaby, M., Aziz, K., Gebrati, L., Uddin, M. S., & Aziz, F. (2021). Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Research International, 2021(1), 5518999. [Google Scholar] [Crossref]

10. Miyah, Y., El Messaoudi, N., Benjelloun, M., Acikbas, Y., Şenol, Z. M., Ciğeroğlu, Z., & Lopez- Maldonado, E. A. (2024). Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: a review. Chemosphere, 142236. [Google Scholar] [Crossref]

11. Hoa, N. V., Minh, N. C., Cuong, H. N., Dat, P. A., Nam, P. V., Viet, P. H. T., ... & Trung, T. S. (2021). Highly porous hydroxyapatite/graphene oxide/chitosan beads as an efficient adsorbent for dyes and heavy metal ions removal. Molecules, 26(20), 6127. [Google Scholar] [Crossref]

12. Yousefi, M., Dadashpour, M., Hejazi, M., Hasanzadeh, M., Behnam, B., de la Guardia, M., ... & Mokhtarzadeh, A. (2017). Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Materials Science and Engineering: C, 74, 568-581. [Google Scholar] [Crossref]

13. Abdelhalim, A. O., Meshcheriakov, A. A., Maistrenko, D. N., Molchanov, O. E., Ageev, S. V., Ivanova, [Google Scholar] [Crossref]

14. D. A., ... & Semenov, K. N. (2022). Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility. Colloids and Surfaces B: Biointerfaces, 210, 112232. [Google Scholar] [Crossref]

15. Pulingam, T., Thong, K. L., Appaturi, J. N., Lai, C. W., & Leo, B. F. (2021). Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere, 281, 130739. [Google Scholar] [Crossref]

16. Shafiee, A., Iravani, S., & Varma, R. S. (2022). Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm, 3(1), e118. [Google Scholar] [Crossref]

17. Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., ... & Belbahri, L. (2021). Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences, 11(14), 6255. [Google Scholar] [Crossref]

18. Gaonkar, M., & Chakraborty, A. P. (2016). Application of eggshell as fertilizer and calcium supplement tablet. International journal of innovative research in science, engineering and technology, 5(3), 3520- 3525. [Google Scholar] [Crossref]

19. Peşmen, G. (2023). Possibility of using eggshell in industry. International Journal of Computational and Experimental Science and Engineering, 9(4), 331-339. [Google Scholar] [Crossref]

20. Asghar, F., Shakoor, B., Fatima, S., Munir, S., Razzaq, H., Naheed, S., & Butler, I. S. (2022). Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation. RSC advances, 12(19), 11750-11768. [Google Scholar] [Crossref]

21. Anchana devi C, Perumal P. Synthesis & application of hydroxyapatite bioceramics from different marine sources. J Res Environ Earth Sci. 2016; 2(11): 7–15. [Google Scholar] [Crossref]

22. Osama, H. R., Mohamed, A. A., & Ashraf, A. M. (2021). AN EGGSHELL HYDROXYAPATITE- GRAPHENE OXIDE NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS FROM WASTE WATER. Journal of Environmental Science, 50(2), 1-33. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles