In Silico Evaluation of Hyptis Verticillata-Derived Phytochemicals Targeting Estrogen Receptor Alpha (Erα) and Progesterone Receptor in Hormone-Dependent Breast Cancer
Authors
Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar (Nigeria)
Department of Biochemistry, College of Natural and Applied Sciences, Salem University, Kogi State (Nigeria)
Department of Physiology, Faculty of Medicine and Pharmaceutical sciences, Kampala international university, Dar es salaam, Tanzania (Nigeria)
Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar (Nigeria)
Department of Biochemistry, College of Natural and Applied Sciences, Salem University, Kogi State (Nigeria)
Department of Biological Sciences, Faculty of Science, Benue State University (Nigeria)
Department of Biochemistry, College of Natural and Applied Sciences, Salem University, Kogi State (Nigeria)
Department of Biochemistry, College of Natural and Applied Sciences, Salem University, Kogi State (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.101100020
Subject Category: Pharmacology
Volume/Issue: 10/11 | Page No: 219-229
Publication Timeline
Submitted: 2025-11-18
Accepted: 2025-11-27
Published: 2025-12-04
Abstract
Hormone-dependent breast cancers, primarily driven by estrogen receptor alpha (ERα) and progesterone receptor (PR) signaling, account for most breast malignancies and remain a major therapeutic challenge due to frequent resistance to endocrine therapy. The search for novel, plant-derived ligands with dual modulatory activity on ERα and PR is therefore critical. This study employed an in silico approach to evaluate selected phytochemicals from Hyptis verticillata—a medicinal plant known for its diverse bioactive constituents—against ERα (Y537S mutant; PDB ID: 6CHZ) and PR (PDB ID: 4A2J). Seven phytocompounds were retrieved from the PubChem database and subjected to drug-likeness analysis using SwissADME, molecular docking with AutoDock Vina, and pharmacokinetic/toxicity prediction via ADMETlab 2.0. Among the screened compounds, squalene (−6.9 kcal/mol) and 4,7-methanon-1H-indene (−6.4 kcal/mol) demonstrated the highest binding affinities toward ERα and PR, respectively. Both ligands showed favorable hydrophobic interactions within the receptor ligand-binding domains, suggesting potential receptor antagonism or modulation. Drug-likeness and ADMET profiling revealed that 3a,4,5,6,7,7a-hexahydro-4,7-methanoindene and 4,7-methanon-1H-indene possess acceptable physicochemical and pharmacokinetic properties, indicating promising oral bioavailability and low toxicity risks. The findings highlight H. verticillata phytochemicals as potential scaffolds for developing multitargeted agents capable of counteracting endocrine resistance in hormone receptor–positive breast cancers. Further validation through molecular dynamics simulations and in vitro receptor-binding assays is recommended to confirm these computational predictions and explore their mechanistic potential.
Keywords
Hyptis verticillata, estrogen receptor alpha (ERα), progesterone receptor
Downloads
References
1. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. (2023). Cancers, 15(9), 2545. [Google Scholar] [Crossref]
2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. [Google Scholar] [Crossref]
3. Beyond endocrine resistance: Estrogen receptor (ESR1) activating mutations—From structure to clinical application. (2024). Breast Cancer Research and Treatment, 198(3), 415–429. https://doi.org/10.1007/s10549-024-07507-3 [Google Scholar] [Crossref]
4. Biological activity and chemical composition of the essential oil from Hyptis verticillata Jacq. (2005). Journal of Agricultural and Food Chemistry, 53(12), 4771–4774. [Google Scholar] [Crossref]
5. Biological activity and chemical composition of the essential oil from Hyptis verticillata Jacq. (2005). Journal of Agricultural and Food Chemistry, 53(12), 4771–4774. [Google Scholar] [Crossref]
6. Dearsly, E. M., Oshatuyi, O., Adaji, P. O., Dada, E. D., Eze, K. C., Igiakong, G. P., & Ogidigo, J. C. (2025, July 10). Aframomum danielli phytocompounds as promising inhibitors of Salmonella Typhi targets: An in-silico approach. International Journal of Research and Innovation in Applied Science, 10(6), 926-938. [Google Scholar] [Crossref]
7. Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. [Google Scholar] [Crossref]
8. Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. [Google Scholar] [Crossref]
9. ESR1 activating mutations: From structure to clinical application. (2022). Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms, 1865(12), 194879. [Google Scholar] [Crossref]
10. ESR1 testing on FFPE samples from metastatic lesions in HR+/HER2− metastatic breast cancer. (2025). Breast Cancer Research, 27, 20. https://doi.org/10.1186/s13058-025-02020-x [Google Scholar] [Crossref]
11. ESR1 Y537S and D538G mutations drive resistance to CDK4/6 inhibitors. (2025). Clinical Cancer Research, 31(9), 1667–1681. [Google Scholar] [Crossref]
12. Estrogen Receptor Signaling in Breast Cancer. (2023). Cancers, 15(19), 4689. [Google Scholar] [Crossref]
13. Estrogen Receptor Signaling in Breast Cancer. (2023). Cancers, 15(19), 4689. [Google Scholar] [Crossref]
14. Estrogen/HER2 receptor crosstalk in cancer. (2023). NPJ Breast Cancer, 9, 53. [Google Scholar] [Crossref]
15. Fanning, S. W., Mayne, C. G., Dharmarajan, V., Carlson, K. E., Martin, T. A., Novick, S. J., … Greene, G. L. (2016). Estrogen receptor α somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the active receptor conformation. eLife, 5, e12792. [Google Scholar] [Crossref]
16. Fanning, S. W., Mayne, C. G., Dharmarajan, V., Carlson, K. E., Martin, T. A., Novick, S. J., Toy, W., Green, B., Panchamukhi, S., Katzenellenbogen, B. S., Griffin, P. R., Shen, Y., & Greene, G. L. (2016). Estrogen receptor α somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the active receptor conformation. eLife, 5, e12792. [Google Scholar] [Crossref]
17. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. (2021). Endocrine-Related Cancer, 28(9), R187–R206. [Google Scholar] [Crossref]
18. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. (2021). Endocrine-Related Cancer, 28(9), R187–R206. [Google Scholar] [Crossref]
19. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. [Google Scholar] [Crossref]
20. Hyptis verticillata Jacq. anti-hyperglycemic potential and GC–MS constituent profiling. (2018). Pathologie Biologie, 66(6), 316–322. [Google Scholar] [Crossref]
21. In silico design of novel bioactive molecules to treat breast cancer. (2023). Frontiers in Pharmacology, 14, 1266833. [Google Scholar] [Crossref]
22. Kamal-Eldin, A., & Appelqvist, L. Å. (2020). Squalene: Antioxidant and anticancer properties. Food Chemistry, 305, 125–133. [Google Scholar] [Crossref]
23. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. [Google Scholar] [Crossref]
24. Larsen, N. A., et al. (2018). Discovery of selective estrogen receptor covalent antagonists for the treatment of ERα WT and ERα MUT breast cancer. Cancer Discovery, 8(9), 1176–1193. [Google Scholar] [Crossref]
25. Lusher, S. J., Raaijmakers, H. C. A., Vu-Pham, D., et al. (2012). X-ray structures of progesterone receptor ligand binding domain reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Journal of Biological Chemistry, 287(24), 20333–20343. [Google Scholar] [Crossref]
26. Lusher, S. J., Raaijmakers, H. C. A., Vu-Pham, D., Kazemier, B., Bosch, R., McGuire, R., Azevedo, R., Hamersma, H., Dechering, K., Oubrie, A., van Duin, M., & de Vlieg, J. (2012). X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Journal of Biological Chemistry, 287(24), 20333–20343. [Google Scholar] [Crossref]
27. Mechanisms of endocrine resistance in hormone receptor-positive breast cancer. (2024). Therapeutic Advances in Medical Oncology, 16, 17588359241262116. [Google Scholar] [Crossref]
28. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. [Google Scholar] [Crossref]
29. Nguyen, T. T., Doan, N. T., & Le, Q. H. (2022). Nanocarrier strategies to improve bioavailability of lipophilic phytochemicals. Pharmaceuticals, 15(2), 180. [Google Scholar] [Crossref]
30. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. [Google Scholar] [Crossref]
31. Progesterone receptor–dependent downregulation of MHC class I facilitates immune evasion in HR+ breast cancer. (2025). Nature Communications, 16, 2734. [Google Scholar] [Crossref]
32. Progesterone receptor–dependent downregulation of MHC class I facilitates immune evasion in HR+ breast cancer. (2025). Nature Communications, 16, 2734. [Google Scholar] [Crossref]
33. Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., & Greene, G. L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95(7), 927–937. [Google Scholar] [Crossref]
34. Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., & Greene, G. L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95(7), 927–937. [Google Scholar] [Crossref]
35. Treating ER-positive breast cancer: A review of the current FDA-approved therapies and novel pharmacological strategies. (2025). Therapeutic Advances in Medical Oncology, 17, 17588359251301813. [Google Scholar] [Crossref]
36. Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry, 46(12), 2287–2303. [Google Scholar] [Crossref]
37. Warren, G. L., Andrews, C. W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M. H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., Woolven, J. M., Peishoff, C. E., & Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry, 49(20), 5912–5931. [Google Scholar] [Crossref]