Methods of Analytical Model Optimization to Increase Energy Efficiency and Lower Emissions

Authors

Sunil Kumar Pareek

Research Scholar at Deptt of Physics, SKD University, Hanumangarh (India)

Vipin Kumar

Professor, Deptt of Physics, SKD University, Hanumangarh (India)

Article Information

DOI: 10.51584/IJRIAS.2025.101100068

Subject Category: Physics

Volume/Issue: 10/11 | Page No: 734-741

Publication Timeline

Submitted: 2025-11-22

Accepted: 2025-11-28

Published: 2025-12-17

Abstract

The strain on current power systems is increased by rising energy consumption. Fossil-fuel dependence continues producing huge carbon emissions. An improved hybrid model that combines solar, wind, and battery units is proposed in this study. Genetic Algorithm and Particle Swarm Optimization refine system behaviour in real time. Environmental inputs and load changes support effective operational predictions (Kim et al., 2023). Analytical approaches track monthly emissions, energy transfer, and storage losses. Results demonstrate reduced emissions and greater energy efficiency during twelve months. Emission estimates reached 0.12–0.14 kg CO₂ per kilowatt-hour. During favourable seasonal conditions, efficiency increased to about 86%. Dynamic control provided stable operation under changeable weather patterns. Reliable output during high demand periods was confirmed by primary data.
Comparative research showed notable improvements over previous static models (Ahmad et al., 2017). Adjustments made in real time improved battery scheduling and decreased reliance on the grid. The technique supports cleaner and adaptive hybrid systems for future use. It offers scalability across regions with diverse climate conditions. The concept promotes smart-grid readiness and supports long-term sustainability goals. Future research could include deeper AI predictions, blockchain verification, and resilience to extreme weather. This study develops practical modelling methodologies for next-generation renewable energy systems.

Keywords

Analytical model, energy efficiency, emission reduction

Downloads

References

1. Abdullah, M. A., Yatim, A. H. M., Tan, C., & Saidur, R. (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 16(5), 3220–3227. https://doi.org/10.1016/j.rser.2012.02.044 [Google Scholar] [Crossref]

2. Ahmad, S. H. A., Saidur, R., Mahbubul, I. M., & AlSulaiman, F. A. (2017). Optical properties of various nanofluids used in solar collectors: A review. Renewable and Sustainable Energy Reviews, 73, 1014–1034. https://doi.org/10.1016/j.rser.2016.11.034 [Google Scholar] [Crossref]

3. Ahman, M., Nilsson, L. J., & Johansson, B. (2017). Global climate policy and deep decarbonization ofenergyintensive industries. Climate Policy, 17(5), 634–649. [Google Scholar] [Crossref]

4. https://doi.org/10.1080/14693062.2016.1167009 [Google Scholar] [Crossref]

5. Alguburi, S., Munther, H., Al-Dulaimi, O., Fakhruldeen, H. F., Sapaev, I. B., Al Seedi, K. F. K., ... & Nakimera, [Google Scholar] [Crossref]

6. G. (2025). Green hydrogen role in sustainable energy transformations: A review. Results in Engineering, 26, 105109. https://doi.org/10.1016/j.rineng.2025.105109 [Google Scholar] [Crossref]

7. Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Alhuyi Nazari, M., & Prabaharan, N. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, 43, 100939. https://doi.org/10.1016/j.esr.2022.100939 [Google Scholar] [Crossref]

8. Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. A. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766. https://doi.org/10.1016/j.rser.2010.12.008 [Google Scholar] [Crossref]

9. Bekakra, Y., & Attous, D. B. (2014). Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG-based wind turbine with MPPT. International Journal of Systems Assurance Engineering and Management, 5(2), 219–229. https://doi.org/10.1007/s13198-013-0190-7 [Google Scholar] [Crossref]

10. Bhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for sustainable development: A review. Renewable and Sustainable Energy Reviews, 71, 796–813. [Google Scholar] [Crossref]

11. https://doi.org/10.1016/j.rser.2016.12.099 [Google Scholar] [Crossref]

12. Budinis, S., & Krevor, S. (2018). Carbon capture and storage: The way forward. Nature Energy, 3, 242–250. https://doi.org/10.1038/s41560-018-0089-9 [Google Scholar] [Crossref]

13. Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., & Hawkes, A. (2018). An assessment of CCS costs, barriers and potential. Energy Strategy Reviews, 22, 61–81. https://doi.org/10.1016/j.esr.2018.08.003 [Google Scholar] [Crossref]

14. Dincer, I., & Rosen, M. A. (2005). Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews, 9(2), 169–189. https://doi.org/10.1016/j.rser.2004.02.009 [Google Scholar] [Crossref]

15. Farooq, M., Raza, A., & Qureshi, I. (2025). Smart storage coordination for low-carbon energy transitions. Energy Reports, 17, 1121–1132. [Google Scholar] [Crossref]

16. Golusin, M., Popov, S., & Dodic, S. (2013). Sustainable energy management. Academic Press. [Google Scholar] [Crossref]

17. Gonzalez, A., McKeogh, E., & O Gallachoir, B. (2004). The role of hydrogen in high wind energy penetration electricity systems: The Irish case. Renewable Energy, 29(4), 471–485. [Google Scholar] [Crossref]

18. https://doi.org/10.1016/j.renene.2003.09.005 [Google Scholar] [Crossref]

19. Huang, Y., Zhao, X., & Lin, J. (2024). Intelligent hybrid systems with adaptive scheduling. Sustainable Energy Technologies and Assessments, 59, 103421. [Google Scholar] [Crossref]

20. Karaboga, D., Akay, B., & Yildiz, O. (2023). Artificial Bee Colony improvements for sustainable energy control. Applied Soft Computing, 145, 110564. [Google Scholar] [Crossref]

21. Kim, J., Lee, S., & Park, Y. (2023). AI-driven load forecasting for hybrid renewable systems. Energy AI, 12, 100245. https://doi.org/10.1016/j.egyai.2023.100245 [Google Scholar] [Crossref]

22. Knobloch, F., Hanssen, S. V., Lam, A., Pollitt, H., Salas, P., Chewpreecha, U., ... & Mercure, J. F. (2020). Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability, 3(6), 437–447. https://doi.org/10.1038/s41893-020-0488-7 [Google Scholar] [Crossref]

23. Kutscher, C. F., Milford, J. B., & Kreith, F. (2019). Principles of sustainable energy systems (3rd ed.). CRC Press. [Google Scholar] [Crossref]

24. Storn, R., & Price, K. (2022). Differential evolution control for renewable optimization. Renewable Energy Systems Review, 56, 221–233. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles