Thickness Dependent Structural, Optical, Electrical and Gas Sensing properties of ZnO thin film

Authors

Rajarshi Krishna Nath

Gurucharan University, Silchar, Assam (India)

Subhash Debnath

Gurucharan University, Silchar, Assam (India)

Indira Dey

Gurucharan University, Silchar, Assam (India)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000097

Subject Category: Science

Volume/Issue: 10/10 | Page No: 1144-1151

Publication Timeline

Submitted: 2025-10-24

Accepted: 2025-10-30

Published: 2025-11-11

Abstract

A spray pyrolysis technique have been used to fabricate Zinc Oxide (ZnO) thin films using Zn (CH3COO)2 as a precursor solution. The structural, optical and electrical properties of the films are explored and then tested for ethanol sensing. Structural studies show that the films are polycrystalline in nature, possessing “hexagonal wurtzite” structure. A decrease of FWHM(Full Width at Half Maximum) with an increase in film thickness is observed, which confirms the increase of crystallite size with an increase in film thickness. The optical bad gap of the films was studied and a “Blue Shift” was observed from 2.97eV to 3.12eV as the film thickness was decreased from 441nm to 172nm. The crystallite sizes obtained from XRD and TEM studies shows an increase with a increase in film thickness. The gas sensing properties of the films have been studied using ethanol, methanol, acetone and LPG at different concentrations and at different operating temperatures. It is observed that thinner films show higher response for all the test gas/vapours.

Keywords

ZnO thi films, spray pyrolysis, blue shift

Downloads

References

1. Paraguay. F. D., Miki-Yoshida. M., Morales. J., Solis, J., Estrada L.W., Thin Solid Films, vol. 373. pp.137-140. 2000. [Google Scholar] [Crossref]

2. Sahay. P.P., J.Mater.Sci. vol. 40.pp.4383-4385. 2005. [Google Scholar] [Crossref]

3. Mitra. P., Maiti. H.S., Sensors and Actuators B, vol. 97. pp. 49-58. 2004. [Google Scholar] [Crossref]

4. Baruwati. B., Kumar. D.K., Manorama. S.V., Sensors and Actuators B,vol. 119, pp. 676-682. 2006 [Google Scholar] [Crossref]

5. Pizzni. S., Butta. N., Narducci. Palladino. D.M., J. Electrochem. Soc. vol.136, No.7,July 1989. [Google Scholar] [Crossref]

6. Sahay. P.P., Nath. R.K., Sensors and Actuators B, vol. 133.pp.222-227. 2008. [Google Scholar] [Crossref]

7. Patel. N.G., Patel. D., Vaishnav. V.S., Sensors and Actuators B, vol.96.pp. 180-189. 2003. [Google Scholar] [Crossref]

8. Morrison. S.R., Sensors and Actuators, vol. 2, pp.329-341. 1982. [Google Scholar] [Crossref]

9. Watson. J. Sensors and Actuators, vol. 5. pp. 29-42. 1984. [Google Scholar] [Crossref]

10. Mitra. P., Chatterjee. A.P., Maiti H.S., Materials Letters, vol. 35.pp. 33-38. 1998. [Google Scholar] [Crossref]

11. Jones. A., Jones. T.A., Mann. B., Griffith. J.G., Sens.Actuators. vol. 5.pp. 75–88. 1984. [Google Scholar] [Crossref]

12. Arshak. K., Gaiden. I., Mater. Sci. Eng. B. vol.118. pp. 44-49. 2005. [Google Scholar] [Crossref]

13. P.P.Sahay, S.Tiwari,R.K.Nath, Cryst.Res.Technol.42,No.7, 723-729 (2007) [Google Scholar] [Crossref]

14. Sahay P.P., Tiwari S., Nath R.K; Cryst. Res. Technol. Vol.42, No.7, pp.723-729. 2007 [Google Scholar] [Crossref]

15. Jain,A. Sagar P., Mehra R.M., Materials Science-Poland, Vol.25, No.1, 2007. [Google Scholar] [Crossref]

16. Tyagi P. and Vedeshwar A.G., Bull.Mater. Sci., vol. 24, No. 3, June 2001, pp. 297-3 [Google Scholar] [Crossref]

17. Demiryont H. and. Nietering K. E, Sol. Energ. Mat. Vol.9, p.79 1989 [Google Scholar] [Crossref]

18. Kröger F. A., “The Chemistry of Imperfect Crystals”, North-Holland, Amsterdam, 1964. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles