Integrated Effects of Lime and Fertilizer Applications on Soil Properties and Sorghum Performance in Acidic Soils of Western Kenya
Authors
Soil Science Department, University of Eldoret (Kenya)
Department of Agronomy and Environmental Science (Kenya)
Department of Crops and Soil Sciences, Maseno University (Kenya)
Article Information
DOI: 10.47772/IJRISS.2025.910000090
Subject Category: Agriculture
Volume/Issue: 9/10 | Page No: 1067-1080
Publication Timeline
Submitted: 2025-07-15
Accepted: 2025-07-25
Published: 2025-11-05
Abstract
Acidic soils cover significant portions of agricultural land in tropical regions, particularly in sub-Saharan Africa, where soil acidity limits crop productivity through multiple mechanisms, including aluminum toxicity, phosphorus fixation, and impaired nutrient cycling. In Western Kenya, where smallholder farmers predominantly grow sorghum (Sorghum bicolor L.) as a staple crop, these soil constraints contribute to chronic yield gaps. While agricultural lime and mineral fertilizers are recognized solutions for soil acidity amelioration, their site-specific interactions and comprehensive effects on both soil health and crop performance remain insufficiently documented. This study evaluated the effects of liming and nutrient microdosing on soil chemical properties and sorghum (Sorghum bicolor (L.) Moench) productivity in the acidic soils of Western Kenya, using factorial field trials conducted in Kakamega and Siaya counties. Treatments combined two lime levels (0 and 4 t ha⁻¹) with varying nitrogen (0, 18.8, 37.5, and 75 kg N ha⁻¹) and phosphorus (0, 6.5, 13, and 26 kg P ha⁻¹) rates. Application of 4 t ha⁻¹ lime significantly (p ≤ 0.05) improved soil chemical properties, increasing soil pH by 20–27%, reducing exchangeable aluminum by 56–89%, enhancing available phosphorus by up to 57%, and increasing total nitrogen by 8–17%. Additionally, soil organic carbon was significantly elevated (p < 0.001), with the greatest improvement (39%) observed in Siaya. Microdosing at 37.5 kg N and 13 kg P ha⁻¹ (N37.5P13) produced the highest sorghum biomass and grain yield responses, with biomass yield increasing by 62–69% and grain yield significantly enhanced at Kakamega (p < 0.001). Grain yield over the control rose by 73%, while agronomic efficiency peaked at 24.1 kg grain kg⁻¹ nutrient at Siaya. Nutrient uptake also improved under liming and optimal fertilization, with stover nitrogen uptake increasing by 55% at Kakamega and grain phosphorus uptake rising by 44% at Siaya Site 2 (p < 0.05). These findings demonstrate that integrating site-specific liming with nutrient microdosing can substantially improve soil fertility and sorghum productivity in acid-degraded soils of Western Kenya.
Keywords
Soil acidity, Liming, Nutrient microdosing, Sorghum productivity, Western Kenya
Downloads
References
1. Achalu Chimdi, A. C., Heluf Gebrekidan, H. G., Kibebew Kibret, K. K., & Abi Tadesse, A. T. (2012). Response of barley to liming of acid soils collected from different land use systems of Western Oromia, Ethiopia. https://www.cabidigitallibrary.org/doi/full/10.5555/20193233659 [Google Scholar] [Crossref]
2. Anderson, N. P., Hart, J. M., Sullivan, D. M., Christensen, N. W., Horneck, D. A., & Pirelli, G. J. (2013). Applying lime to raise soil pH for crop production (Western Oregon). Oregon State University Extension. Link [Google Scholar] [Crossref]
3. Asomaning, S. K. (2020). Processes and factors affecting phosphorus sorption in soils. Sorption in 2020s, 45, 1–16. [Google Scholar] [Crossref]
4. Enesi, R. O., Dyck, M., Chang, S., Thilakarathna, M. S., Fan, X., Strelkov, S., & Gorim, L. Y. (2023). Liming remediates soil acidity and improves crop yield and profitability—a meta-analysis. Frontiers in Agronomy, 5, 1194896. [Google Scholar] [Crossref]
5. Fageria, N. K., & Baligar, V. C. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy, 99, 345–399. [Google Scholar] [Crossref]
6. Fageria, N. K., Baligar, V. C., & Clark, R. B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–268. [Google Scholar] [Crossref]
7. Gatiboni, L., & Hardy, D. (2023). Soil acidity and liming: Basic information for farmers and gardeners. NC State Extension Publications. https://content.ces.ncsu.edu/soil-acidity-and-liming-basic-information-for-farmers-and-gardeners [Google Scholar] [Crossref]
8. Getahun, D., Dessalegn, T., & Bekele, A. (2019). Effect of lime and phosphorus fertilizer on acid soil properties and sorghum grain yield and yield components at Asola in Western Ethiopia. World Research Journal of Agricultural Sciences, 6(2), 167–175. [Google Scholar] [Crossref]
9. Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., Sohail, M. D., Niazi, H., Touseef, M., & Khan, A. A. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1), 71–81. [Google Scholar] [Crossref]
10. Haynes, R. J. (1982). Effects of liming on phosphate availability in acid soils. Plant and Soil, 68(3), 289–308. https://doi.org/10.1007/BF02197935 [Google Scholar] [Crossref]
11. Inoue, K., Kondo, S., Tamano, Y., & Yokota, H. (2001). Amelioration of subsoil acidity in a nonallophanic Andosol by surface application of organic calcium salts. Soil Science and Plant Nutrition, 47(1), 113–122. https://doi.org/10.1080/00380768.2001.10408373 [Google Scholar] [Crossref]
12. Kisinyo, P., Gudu, S., Palapala, V., Opala, P. A., Othieno, C., & Ouma, E. O. (2015). Micro-dosing of lime, phosphorus and nitrogen fertilizers effect on maize performance on an acid soil in Kenya. http://repository.rongovarsity.ac.ke/handle/123456789/1809 [Google Scholar] [Crossref]
13. Mitsuta, A., Lourenço, K. S., Chang, J., Ros, M., Schils, R., Uchida, Y., & Kuramae, E. E. (2025). Liming enhances the abundance and stability of nitrogen-cycling microbes. Biology and Fertility of Soils, 61(4), 761–772. https://doi.org/10.1007/s00374-025-01889-2 [Google Scholar] [Crossref]
14. Mkhonza, N. P., Buthelezi-Dube, N. N., & Muchaonyerwa, P. (2020). Effects of lime application on nitrogen and phosphorus availability in humic soils. Scientific Reports, 10, 8634. https://doi.org/10.1038/s41598-020-65501-3 [Google Scholar] [Crossref]
15. Muindi, E. M., Mrema, J. P., Semu, E., Mtakwa, P. W., Gachene, C. K., & Njogu, M. K. (2015). Phosphorus adsorption and its relation with soil properties in acid soils of Western Kenya. International Journal of Plant & Soil Science, 4(3), 203–211. [Google Scholar] [Crossref]
16. Mullen, R., Lentz, E., & Maurice, W. (2016). Soil acidity and liming for agronomic production. Ohio State University Extension. https://ohioline.osu.edu/factsheet/AGF-505-07 [Google Scholar] [Crossref]
17. Nziguheba, G., Adewopo, J., Masso, C., Nabahungu, N. L., Six, J., Sseguya, H., Taulya, G., & Vanlauwe, B. (2022). Assessment of sustainable land use: Linking land management practices to sustainable land use indicators. International Journal of Agricultural Sustainability, 20(3), 265–288. https://doi.org/10.1080/14735903.2021.1926150 [Google Scholar] [Crossref]
18. Omollo, O., Semu, E., Msaky, J., & Owuor, P. (2016). Effects of cropping systems and agricultural lime on soil properties and nutrient content of sugarcane on acidified soils of Kisumu County, Kenya. https://pdfs.semanticscholar.org/dd43/be88d03becbcd3b70cddcbcb8a11604db856.pdf [Google Scholar] [Crossref]
19. Opala, P. A. (2023). The use of phosphate rocks in East Africa: A review. Agricultural Reviews, 44(1), 31–38. [Google Scholar] [Crossref]
20. Prasad, R., & Chakraborty, D. (2019). Phosphorus basics: Understanding phosphorus forms and their cycling in the soil. Alabama Cooperative Extension System, 151, 292–315. [Google Scholar] [Crossref]
21. Rengel, Z. (2003). Handbook of Soil Acidity. Marcel Dekker. http://www.dekker.com [Google Scholar] [Crossref]
22. Riaz, M. U., Ayub, M. A., Khalid, H., Ul Haq, M. A., Rasul, A., Ur Rehman, M. Z., & Ali, S. (2020). Fate of micronutrients in alkaline soils. In S. Kumar, R. S. Meena, & M. K. Jhariya (Eds.), Resources Use Efficiency in Agriculture (pp. 577–613). Springer Singapore. https://doi.org/10.1007/978-981-15-6953-1_16 [Google Scholar] [Crossref]
23. Sanchez, P. A. (1976). Properties and management of soils in the tropics. Wiley. http://archive.org/details/propertiesmanage0000sanc [Google Scholar] [Crossref]
25. Sanchez, P. A., & Uehara, G. (1980). Management considerations for acid soils with high phosphorus fixation capacity. In F. E. Khasawneh, E. C. Sample, & E. J. Kamprath (Eds.), The Role of Phosphorus in Agriculture (pp. 471–514). American Society of Agronomy. [Google Scholar] [Crossref]
26. Sato, S., & Comerford, N. B. (2005). Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian Ultisol. Revista Brasileira de Ciência do Solo, 29, 685–694. [Google Scholar] [Crossref]
27. Silveira, T. C., Pegoraro, R. F., Kondo, M. K., Portugal, A. F., & Resende, Á. V. (2018). Sorghum yield after liming and combinations of phosphorus sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(4), 243–248. [Google Scholar] [Crossref]
28. Soileau, J. M., & Bradford, B. N. (1985). Biomass and sugar yield response of sweet sorghum to lime and fertilizer. Agronomy Journal, 77(3), 471–475. [Google Scholar] [Crossref]
29. Sumner, M. E., & Noble, A. D. (2003). Soil acidification: The world story. In M. E. Sumner (Ed.), Handbook of Soil Acidity (pp. 15–42). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203912317-3 [Google Scholar] [Crossref]
30. Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil, 1(1), 491–508. https://doi.org/10.5194/soil-1-491-2015 [Google Scholar] [Crossref]
31. Wagner, M. H. (2024). Soil acidity in southern Canadian prairie chernozemic agricultural soils [Master’s thesis, University of Lethbridge (Canada)]. ProQuest Dissertations. https://search.proquest.com/openview/5a26a8c652336e8cd97fd609e5e5e35b [Google Scholar] [Crossref]
32. Wilding, L. P., & Drees, L. R. (1985). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedogenesis and Soil Taxonomy I: Concepts and Interactions (Vol. 3, pp. 83–116). Elsevier. [Google Scholar] [Crossref]
33. Zheng, S. J. (2010). Crop production on acidic soils: Overcoming aluminium toxicity and phosphorus deficiency. Annals of Botany, 106(1), 183–184. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Breeding for a Greener Future: Selective Breeding and Crossbreeding Approaches to Minimize Methane Emissions in Ruminant Livestock
- Determinants of Adoption of Post-Harvest Losses Prevention Techniques among Banana/Plantain Marketers in Lagos State, Nigeria
- Enhancing Rice Yield Prediction Using UAV-Based Multispectral Imaging and Machine Learning Algorithms
- Seed-Borne Fungi of Groundnuts (Arachis Hypogaea) and Their Management with Ginger (Zingiber Officinale) Extract In Makurdi, Nigeria
- The Influence of Landforms and Slope on Agricultural Cropping Patterns in Chhatrapati Sambhajinagar District