IoT-Integrated Mercury Substance Detection System for Cosmetic Product Safety
Authors
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Department of Computer Engineering, University of Technology–Iraq, Baghdad (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Centre for Telecommunication Research & Innovation, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM) (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.910000110
Subject Category: Engineering
Volume/Issue: 9/10 | Page No: 1289-1297
Publication Timeline
Submitted: 2025-10-02
Accepted: 2025-10-10
Published: 2025-11-05
Abstract
Mercury is one of the most toxic heavy metals, capable of causing severe health problems such as kidney damage, anxiety, depression, and memory loss. Despite these risks, mercury-containing cosmetics continue to be used as skin-lightening agents, often without consideration of their clinical impacts. To address this issue, this study proposes the development of an IoT-based system for detecting mercury in cosmetic products. The system integrates a pH sensor with a NodeMCU board programmed using Arduino IDE, while Blynk and Google Spreadsheet are employed for real-time monitoring and historical data storage. The detection principle is based on pH analysis, as mercury-containing cosmetics typically fall within the acidic pH range of 5–7. Experimental validation was conducted on five cosmetic samples, of which two (pH 6.0 and 6.2) indicated the presence of mercury. The results demonstrate that the proposed IoT-based system can successfully identify and record mercury contamination, providing accessible monitoring through Blynk and systematic data logging via Google Spreadsheet. This approach highlights the potential of low-cost IoT-based solutions for enhancing cosmetic product safety monitoring.
Keywords
mercury detection, IoT based monitoring, pH Sensor, Blynk
Downloads
References
1. Ho, Y. B., Abdullah, N. H., Hamsan, H., & Tan, E. S. S. (2017). Mercury contamination in facial skin lightening creams and its health risks to users. Regulatory Toxicology and Pharmacology, 88, 72–76. [Google Scholar] [Crossref]
2. Abbas, H. H., Sakakibara, M., Sera, K., Nurgahayu, & Andayanie, E. (2020). Mercury exposure and health problems of the students using skin-lightening cosmetic products in Makasar, South Sulawesi, Indonesia. Journal of Cosmetic, 7, 58. [Google Scholar] [Crossref]
3. Seewan, S., & Benjarongkij, Y. (2014). The influencing factors pressuring Thai women on decision making on beauty and appearance transformation. Journal of Public Relations, 7. [Google Scholar] [Crossref]
4. Zhao, M., Li, Y., & Wang, Z. (2022). Mercury and mercury-containing preparations: History of use, clinical applications, pharmacology, toxicology, and pharmacokinetics in traditional Chinese medicine. Frontiers in Pharmacology, 13, 807807. [Google Scholar] [Crossref]
5. Majeed, T., Shah, S. H., & Anjum, I. (2021). Estimation of mercury and hydroquinone content in skin whitening creams and the potential risks to the health of women in Lahore, Pakistan. Journal of Pakistan Association of Dermatologists, 31(1), 33–41. [Google Scholar] [Crossref]
6. Yoshimoto, N., Takaoka, M., Fujimori, T., Oshita, K., Sakai, N., & Abd Kdir, S. A. S. (2016). Substance flow analysis of mercury in Malaysia. Atmospheric Pollution Research, 7(5), 799–807. [Google Scholar] [Crossref]
7. Wang, Z., & Fang, X. (2021). Chronic mercury poisoning from daily cosmetics: Case report and brief literature review. Cureus, 13(11). [Google Scholar] [Crossref]
8. Sin, K. W., & Tsang, H. F. (2003). Large-scale mercury exposure due to a cream cosmetic: Community-wide case series. Hong Kong Medical Journal, 9(5), 329–334. [Google Scholar] [Crossref]
9. Zhang, L., et al. (2017). A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 17(14), 9133–9144. [Google Scholar] [Crossref]
10. Pratiwi, R., Auliya, N. N., Yusar, R. F., & Shofwan, A. A. A. (2022). Analysis of prohibited and restricted ingredients in cosmetics. Cosmetics, 9(4), 87. [Google Scholar] [Crossref]
11. Girolametti, F., et al. (2023). Essential and potentially toxic elements (PTEs) content in European tea (Camellia sinensis) leaves: Risk assessment for consumers. Molecules, 28(9), 3802. [Google Scholar] [Crossref]
12. Selid, P. D., Xu, H., Collins, E. M., Face-Collins, M. S., & Zhao, J. X. (2009). Sensing mercury for biomedical and environmental monitoring. Sensors, 9(7), 5446–5459. [Google Scholar] [Crossref]
13. Bohari, N. A., Siddiquee, S., Saallah, S., Misson, M., & Arshad, S. E. (2021). Electrochemical behaviour of real-time sensor for determination of mercury in cosmetic products based on PANI/MWCNTs/AuNPs/ITO. Cosmetics, 8(1), 17. [Google Scholar] [Crossref]
14. Sukesan, R., et al. (2019). Instant mercury ion detection in industrial wastewater with a microchip using extended gate field-effect transistors and a portable device. Sensors, 19(9), 2209. [Google Scholar] [Crossref]
15. Minami, T., Minamiki, T., & Tokito, S. (2016). Detection of mercury (II) ion in water using an organic field-effect transistor with a cysteine-immobilized gold electrode. Japanese Journal of Applied Physics, 55(4S), 04EL02. [Google Scholar] [Crossref]
16. Minami, T., Tang, W., & Asano, K. (2021). Chemical sensing based on water-gated polythiophene thin-film transistors. Polymer Journal, 53(12), 1315–1323. [Google Scholar] [Crossref]
17. Xiao, W., et al. (2016). A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors, 16(11), 1871. [Google Scholar] [Crossref]
18. Ghanei-Motlagh, M., Taher, M. A., Heydari, A., Ghanei-Motlagh, R., & Gupta, V. K. (2016). A novel voltammetric sensor for sensitive detection of mercury (II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer. Materials Science and Engineering C, 63, 367–375. [Google Scholar] [Crossref]
19. Talat, M., Tripathi, P., & Srivastava, O. N. (2018). Highly sensitive electrochemical detection of mercury present in the beauty creams using graphene modified glassy carbon electrode. Innovative Corrosion and Materials Science, 8(1), 24–31. [Google Scholar] [Crossref]
20. Guo, M., et al. (2020). A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion. Biosensors and Bioelectronics, 150, 111899. [Google Scholar] [Crossref]
21. Ekpunobi, U. E., Okonkwo, E. O., Udeh, C. V., Ogbuagu, A. S., & Duru, C. B. (2014). Determination of hydroquinone and mercury concentrations in some skin lightening lotions and creams sold in Southeastern Nigeria. International Journal of Biotechnology Research, 2(1), 11–16. [Google Scholar] [Crossref]
22. Arshad, M., et al. (2021). Quantitative estimation of the hydroquinone, mercury and total plate count in skin-lightening creams. Sustainability, 13(16), 8786. [Google Scholar] [Crossref]
23. Matangi, S. P., Mamidi, S. A., Raghavamma, S. T. V., & Nadendla, R. R. (2014). Formulation and evaluation of anti-aging poly herbal cream. Skin, 5(6). [Google Scholar] [Crossref]
24. Khodijah, S., Junus, N., & Achir, N. (2022). The role of supervisory agency in the circulation of cosmetics with fake distribution permission. Estudiante Law Journal, 4(2), 1–16. [Google Scholar] [Crossref]
25. Fu, Q., et al. (2016). A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab on a Chip, 16(10), 1927–1933. [Google Scholar] [Crossref]
26. Toan, T. T. T. (2022). Detection of methylparaben in cosmetics by poly L–lysine/reduced graphene oxide-based sensor. ECS Sensors Plus, 1(3), 031603. [Google Scholar] [Crossref]
27. Selid, P. D., Xu, H., Collins, E. M., Face-Collins, M. S., & Zhao, J. X. (2009). Sensing mercury for biomedical and environmental monitoring. Sensors, 9(7), 5446–5459. [Google Scholar] [Crossref]
28. Bohari, N. A., Siddiquee, S., Saallah, S., Misson, M., & Arshad, S. E. (2021). Electrochemical behaviour of real-time sensor for determination of mercury in cosmetic products based on PANI/MWCNTs/AuNPs/ITO. Cosmetics, 8(1), 17. [Google Scholar] [Crossref]
29. Minami, T., Tang, W., & Asano, K. (2021). Chemical sensing based on water-gated polythiophene thin-film transistors. Polymer Journal, 53(12), 1315–1323. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- An Adaptive Joint Filtering Approach to Wireless Relay Network for Transmission Rate Maximization
- Design and Implementation of Solar PV-Based Railway Microgrid for Linke Hofmann Busch Coaches
- Cost Control Techniques on Civil Engineering Projects in Oyo State, Nigeria
- Strength and Predictive Modeling of Corn Cob Ash Blended Concrete Using Multi-Output Artificial Neural Network Approach
- Properties of Vanadium (VO2+) doped K2O - CdO - B2O3 - SiO2 (KCdBSi) Glasses