Performance Evaluation of Image Classification Models on Resource-Constrained STM32 Microcontrollers
Authors
Muhammad Aiman Akmal Mohd Shaifullizan
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal (Malaysia Melaka)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal (Malaysia Melaka)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal (Malaysia Melaka)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal (Malaysia Melaka)
Teaching Factory, Universiti Teknikal (Malaysia Melaka)
Article Information
DOI: 10.47772/IJRISS.2025.910000238
Subject Category: Artificial Intelligence
Volume/Issue: 9/10 | Page No: 2977-2986
Publication Timeline
Submitted: 2025-10-12
Accepted: 2025-10-18
Published: 2025-11-08
Abstract
Deploying deep learning on microcontrollers offers real-time intelligence at the edge, but tight memory and compute budgets complicate design choices. This study evaluates image classification on the STM32H747I-DISCO using a compact convolutional neural network trained on five board classes (Arduino Uno, Node MCU, ESP8266-01, Micro: bit V2.0, ESP32-CAM). A small, augmented dataset (50–100 images per class) was used with standard transformations; models were quantised to int8 and deployed via STM32CubeIDE and the STM32-AI CLI. The analysis examines how input resolution (1080p vs 480p) interacts with accuracy, memory footprint, latency, and power. Four classes achieve ≥95% accuracy across both resolutions, while ESP8266-01 improves from 65.7% (1080p) to 92.3% (480p), suggesting that downsampling can suppress distracting fine-grained artefacts. Activation-buffer tuning and post-training quantisation reduce RAM from ~761 kB to ~610 kB and Flash from ~1.42 MB to ~1.20 MB without accuracy loss; 480p further lowers latency by up to 35% and power by ~20%. The findings provide a resolution-aware benchmark and practical guidance for balancing fidelity and efficiency on STM32-class MCUs, and they motivate future work with larger benchmarks, cross-platform comparisons, and pruning/distillation pipelines
Keywords
STM32H747I-DISCO; Tiny ML; Edge AI; Image
Downloads
References
1. Andrade, E., Pietrantuono, R., Machida, F., & Cotroneo, D. (2023). A Comparative Analysis of Software Aging in Image Classifiers on Cloud and Edge. IEEE Transactions on Dependable and Secure Computing, 20(1), 563–573. https://doi.org/10.1109/TDSC.2021.3139201 [Google Scholar] [Crossref]
2. Berta, R., Dabbous, A., Lazzaroni, L., Pau, D. Pietro, & Bellotti, F. (2024). Developing a TinyML Image Classifier in an Hour. IEEE Open Journal of the Industrial Electronics Society, 5, 946–960. https://doi.org/10.1109/OJIES.2024.3451959 [Google Scholar] [Crossref]
3. Chepkov, A. O., Klimachev, V. S., Korchagin, A. I., & Vlasov, A. I. (2021). Analysis of the features of image processing using the Hamming network on the STM-32 microcontroller. Journal of Physics: Conference Series, 1889(2), 022046. https://doi.org/10.1088/1742-6596/1889/2/022046 [Google Scholar] [Crossref]
4. de Vita, F., Nocera, G., Bruneo, D., Tomaselli, V., Giacalone, D., & Das, S. K. (2020). Quantitative Analysis of Deep Leaf: a Plant Disease Detector on the Smart Edge. 2020 IEEE International Conference on Smart Computing (SMARTCOMP), 49–56. https://doi.org/10.1109/SMARTCOMP50058.2020.00027 [Google Scholar] [Crossref]
5. Dominguez-Morales, J. P., Duran-Lopez, L., Gutierrez-Galan, D., Rios-Navarro, A., Linares-Barranco, A., & Jimenez-Fernandez, A. (2021). Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification. Sensors, 21(9), 2975. https://doi.org/10.3390/s21092975 [Google Scholar] [Crossref]
6. Gao, H., Zhong, S., Dong, L., & Yuan, T. (2023). Performance Analysis of Machine Learning Algorithm on GD32 Microcontrollers. 2023 6th International Conference on Artificial Intelligence and Big Data (ICAIBD), 763–767. https://doi.org/10.1109/ICAIBD57115.2023.10206295 [Google Scholar] [Crossref]
7. Han, F., Li, L., Wang, K., Feng, F., Pan, H., & Yu, D. (2016). An improved FFT architecture optimized for reconfigurable application specified processor. Proceedings - 2015 IEEE 11th International Conference on ASIC, ASICON 2015, 2, 5–8. https://doi.org/10.1109/ASICON.2015.7517201 [Google Scholar] [Crossref]
8. Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L. C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Le, Q., & Adam, H. (2019). Searching for mobileNetV3. Proceedings of the IEEE International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2019.00140 [Google Scholar] [Crossref]
9. Lee, D., Kim, J.-S., & Hong, S. (2024). Dual-Core-Based Microcontrollers Inference Design and Performance Analysis. IEEE Access, 12, 120326–120336. https://doi.org/10.1109/ACCESS.2024.3443406 [Google Scholar] [Crossref]
10. Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet V2: Practical guidelines for efficient cnn architecture design. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11218 LNCS. https://doi.org/10.1007/978-3-030-01264-9_8 [Google Scholar] [Crossref]
11. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2018.00474 [Google Scholar] [Crossref]
12. Svoboda, F., Fernandez-Marques, J., Liberis, E., & Lane, N. D. (2022). Deep learning on microcontrollers: A study on deployment costs and challenges. EuroMLSys 2022 - Proceedings of the 2nd European Workshop on Machine Learning and Systems, 54–63. https://doi.org/10.1145/3517207.3526978 [Google Scholar] [Crossref]
13. Thang, H. (2021). Implementation of Deep Learning Neural Network LeNet5 on STM32 Microcontroller for Image Recognition. TNU Journal of Science and Technology, 226(11), 191–199. https://doi.org/10.34238/tnu-jst.4497 [Google Scholar] [Crossref]
14. Xie, Y.-L., Lin, X.-R., & Lin, C.-W. (2022). SEmbedNet: Hardware-Friendly CNN for Ectopic Beat Classification on STM32-Based Edge Device. 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), 1–6. https://doi.org/10.1109/RASSE54974.2022.9989708 [Google Scholar] [Crossref]
15. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2018.00716 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Role of Artificial Intelligence in Revolutionizing Library Services in Nairobi: Ethical Implications and Future Trends in User Interaction
- ESPYREAL: A Mobile Based Multi-Currency Identifier for Visually Impaired Individuals Using Convolutional Neural Network
- Comparative Analysis of AI-Driven IoT-Based Smart Agriculture Platforms with Blockchain-Enabled Marketplaces
- AI-Based Dish Recommender System for Reducing Fruit Waste through Spoilage Detection and Ripeness Assessment
- SEA-TALK: An AI-Powered Voice Translator and Southeast Asian Dialects Recognition