Urbanization and Environmental Quality Assessment in the Abuja Municipal Area Council Using Lst, Ndvi, Ndbi and Ndwi
Authors
School of Postgraduate Studies, Nasarawa State University, Keffi, Nigeria (Nigeria)
ISSE/African University of Science & Technology, NASRDA, Airport Road, Lugbe, Abuja, Nigeria (Nigeria)
Department of Geomatics, Ahmadu Bello University, Zaria, Nigeria (Nigeria)
Article Information
DOI: 10.47772/IJRISS.2025.910000482
Subject Category: Social science
Volume/Issue: 9/10 | Page No: 5860-5873
Publication Timeline
Submitted: 2025-11-02
Accepted: 2025-11-08
Published: 2025-11-17
Abstract
Urbanisation is one of the main environmental changes in the twenty-first century that significantly changes landscapes and disrupts the ecological balance in various regions of the world. The most significant issue in Abuja Municipal Area Council (AMAC)is associated with the rate at which urbanisation tends to take place more rapidly without sufficient protective measures towards the natural ecosystems.This study assessed Urbanization and Environmental Quality in the AMAC using Land Surface Temperature (LST), Nominalised Difference Built-up Index (NDBI), Normalised Difference Vegetation Index (NDVI), and Normalised Difference Water Index (NDWI).Landsat 8 data for 2014, 2019 and 2024 were used to estimate LST, NDVI, NDBI and NDWI of the study area. Correlation analysis was used to assess the relationship between the indices. The results indicate a progressive rise in LST across the years, with mean values increasing from 35.15°C in 2014 to 39.11°C in 2024. The NDBI values remained relatively stable but slightly increased in maximum values from 0.403 in 2014 to 0.463 in 2024. The NDVI showed moderate vegetation presence throughout the period, with mean values ranging between 0.22 and 0.24. The NDWI values increased over time, with the mean shifting from -0.23 in 2014 to 0.06 in 2024. The standard deviations for all indices were low, implying minimal variability within each dataset. The correlation analysis reveals that In 2014, LST exhibited a strong positive correlation with the NDBI (r = 0.69) and a strong negative correlation with the Normalised Difference Vegetation Index (NDVI) (r = -0.69), indicating that built-up areas contributed to higher temperatures while vegetation had a cooling effect. NDWI also showed a positive relationship with LST (r = 0.56). By 2019, the correlation between LST and NDBI remained positive (r = 0.64) but slightly weaker, while the relationship with NDVI remained negative (r = -0.71). However, the association between LST and NDWI became weakly negative (r = -0.11). In 2024, similar patterns persisted with LST positively related to NDBI (r = 0.63) and negatively related to NDVI (r = -0.59). The moderate positive correlation between NDVI and NDWI (r = 0.47) in 2024 reflects that vegetated areas retained more surface moisture. The study recommended that Abuja Municipal Area Council impose more stringent development restrictions to prevent the spread of impervious materials in the recently urbanised areas and encourage the use of permeable surface designs.
Keywords
Urbanisation; Environmental Quality; Land Surface Temperature (LST); Nominalised Difference
Downloads
References
1. Achuenu, A. S., & Ayuba, I. (2025). An Integration of Systems Approach in the Assessment of Sustainable Development and Good Governance of Abuja, Nigeria. International Journal of African Innovation and Multidisciplinary Research. https://doi.org/10.70382/mejaimr.v7i2.021 [Google Scholar] [Crossref]
2. Ali Shah, S., Kiran, M., Nazir, A., & Ashrafani, S. H. (2022). Exploring Ndvi And Ndbi Relationship Using Landsat 8 Oli/Tirs In Khangarh Taluka, Ghotki. Malaysian Journal of Geosciences, 6(1), 08–11. https://doi.org/10.26480/mjg.01.2022.08.11 [Google Scholar] [Crossref]
3. Antolín-López, R., Martínez-Bravo, M. del M., & Ramírez-Franco, J. A. (2024). How to make our cities more livable? Longitudinal interactions among urban sustainability, business regulatory quality, and city livability. Cities, 154, 105358. https://doi.org/10.1016/j.cities.2024.105358 [Google Scholar] [Crossref]
4. Asabere, S. B., Acheampong, R. A., Ashiagbor, G., Beckers, S. C., Keck, M., Erasmi, S., Schanze, J., & Sauer, D. (2020). Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy, 96, 104707. https://doi.org/10.1016/j.landusepol.2020.104707 [Google Scholar] [Crossref]
5. Assefa, W. W., Eneyew, B. G., & Wondie, A. (2021). The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecological Processes, 10(1), 39. https://doi.org/10.1186/s13717-021-00310-8 [Google Scholar] [Crossref]
6. Aulia, D. N., & Marpaung, B. O. Y. (2025). Assessment of Livability factors as an Adaptation of Settled Behavior to Improve Sustainable Housing. Future Cities and Environment, 11. https://doi.org/10.70917/fce-2025-004 [Google Scholar] [Crossref]
7. Bebi, B. B., & Iyambo, S. N. (2025). A study of spatial and temporal variation of urban population growth in Windhoek, Namibia. Environmental Research Communications, 7(5), 055012. https://doi.org/10.1088/2515-7620/add3d2 [Google Scholar] [Crossref]
8. Bello, I.E., Usman, U. B. & Abubakar, M. (2022). Space-based Mapping and Assessment of a Three-decade Urban Landcover Dynamics towards a Smart Federal Capital City, Abuja, Nigeria. Asian Journal of Geographical Research, 5(4), 30-43. https://doi.org/10.9734/ajgr/2022/v5i4169) [Google Scholar] [Crossref]
9. Bikis, A. (2023). Quantifying and analyzing the impact assessment on land use change of urban growth using a timeline. Environmental Science and Pollution Research, 30(22), 62762–62781. https://doi.org/10.1007/s11356-023-26443-1 [Google Scholar] [Crossref]
10. Chukwurah, G. O., John-nsa, C. O., Okeke, F., Chukwudi, E. C., & Ogorchukwu, I. M. (2022). Rapid spatial growth of cities and its planning implications for developing countries: a case study of Abuja, Nigeria. Indonesian Journal of Geography, 54(2). https://doi.org/10.22146/ijg.70316 [Google Scholar] [Crossref]
11. Cirolia, L. R. (2020). Fractured fiscal authority and fragmented infrastructures: Financing sustainable urban development in Sub-Saharan Africa. Habitat International, 104, 102233. https://doi.org/10.1016/j.habitatint.2020.102233 [Google Scholar] [Crossref]
12. Dapke, P. P., Nagare, S. M., Quadri, S. A., Bandal, S. B., Gaikwad, R. M., & Baheti, M. R. (2025). Seasonal Analysis of Vegetation, Moisture, Urbanization, and Land Surface Temperature (LST) Using NDVI, NDMI, NDWI, and NDBI Indices: A Case Study of Sillod, Maharashtra. 2025 International Conference on Computational, Communication and Information Technology (ICCCIT), 753–760. https://doi.org/10.1109/ICCCIT62592.2025.10928110 [Google Scholar] [Crossref]
13. Das, N., & Mehrotra, S. (2023). Impact of Urban Expansion on Wetlands: A Case Study of Bhoj Wetland, India. Journal of the Indian Society of Remote Sensing, 51(8), 1697–1714. https://doi.org/10.1007/s12524-023-01728-7 [Google Scholar] [Crossref]
14. Enoguanbhor, E. C., Gollnow, F., Walker, B. B., Nielsen, J. O., & Lakes, T. (2021). Key Challenges for Land Use Planning and Its Environmental Assessments in the Abuja City-Region, Nigeria. Land, 10(5), 443. https://doi.org/10.3390/land10050443 [Google Scholar] [Crossref]
15. Ghalehteimouri, K. J., Ros, F. C., Rambat, S., & Nasr, T. (2024). Spatial and Temporal Water Pattern Change Detection through the Normalized Difference Water Index (NDWI) for Initial Flood Assessment: A Case Study of Kuala Lumpur 1990 and 2021. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 114(1), 178–187. https://doi.org/10.37934/arfmts.114.1.178187 [Google Scholar] [Crossref]
16. Gupta, S. K., Roy, P., Kanga, S., Singh, S. K., Meraj, G., & Kumar, P. (2024). Impact of topographic and hydrological parameters on urban health in Jaipur City. Current Opinion in Environmental Science & Health, 42, 100584. https://doi.org/10.1016/j.coesh.2024.100584 [Google Scholar] [Crossref]
17. Halefom, A., He, Y., Nemoto, T., Feng, L., Li, R., Raghavan, V., Jing, G., Song, X., & Duan, Z. (2024). The Impact of Urbanization-Induced Land Use Change on Land Surface Temperature. Remote Sensing, 16(23), 4502. https://doi.org/10.3390/rs16234502 [Google Scholar] [Crossref]
18. Hess, D. J. (2022). The value of analytic diversity in urban and sustainability studies. Local Environment, 27(3), 267–271. https://doi.org/10.1080/13549839.2022.2041581 [Google Scholar] [Crossref]
19. Hu, Y., Li, Y., Li, Y., Wu, J., Zheng, H., & He, H. (2023). Balancing urban expansion with a focus on ecological security: A case study of Zhaotong City, China. Ecological Indicators, 156, 111105. https://doi.org/10.1016/j.ecolind.2023.111105 [Google Scholar] [Crossref]
20. Kamana, A. A., Radoine, H., & Nyasulu, C. (2024). Urban challenges and strategies in African cities – A systematic literature review. City and Environment Interactions, 21, 100132. https://doi.org/10.1016/j.cacint.2023.100132 [Google Scholar] [Crossref]
21. Kara, Y., & Yavuz, V. (2025). Urban Microclimates in a Warming World: Land Surface Temperature (LST) Trends Across Ten Major Cities on Seven Continents. Urban Science, 9(4), 115. https://doi.org/10.3390/urbansci9040115 [Google Scholar] [Crossref]
22. Kimothi, S., Thapliyal, A., Gehlot, A., Aledaily, A. N., Gupta, A., Bilandi, N., Singh, R., Kumar Malik, P., & Vaseem Akram, S. (2023). Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (LANDSAT TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs). Sustainable Energy Technologies and Assessments, 55, 102956. https://doi.org/10.1016/j.seta.2022.102956 [Google Scholar] [Crossref]
23. Kong, L., Liu, Z., & Wu, J. (2020). A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. Journal of Cleaner Production, 273, 123142. https://doi.org/10.1016/j.jclepro.2020.123142 [Google Scholar] [Crossref]
24. Ku, C.-A., & Tsai, S.-S. (2024). Simulating the effects of planning strategies on urban heat island and air pollution mitigation in an urban renewal area. Journal of Geographical Systems, 26(3), 329–350. https://doi.org/10.1007/s10109-023-00436-7 [Google Scholar] [Crossref]
25. Li, H., Thapa, I., Xu, S., & Yang, P. (2024). Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots. Remote Sensing, 16(21), 3973. https://doi.org/10.3390/rs16213973 [Google Scholar] [Crossref]
26. Mallick, J., & Alqadhi, S. (2025). Explainable artificial intelligence models for proposing mitigation strategies to combat urbanization impact on land surface temperature dynamics in Saudi Arabia. Urban Climate, 59, 102259. https://doi.org/10.1016/j.uclim.2024.102259 [Google Scholar] [Crossref]
27. Mandal, J., Ghosh, N., & Mukhopadhyay, A. (2019). Urban Growth Dynamics and Changing Land-Use Land-Cover of Megacity Kolkata and Its Environs. Journal of the Indian Society of Remote Sensing, 47(10), 1707–1725. https://doi.org/10.1007/s12524-019-01020-7 [Google Scholar] [Crossref]
28. Martinez, A. de la I., & Labib, S. M. (2022). Demystifying Normalized Difference Vegetation Index (NDVI) for Greenness Exposure Assessments and Policy Interventions in Urban Greening. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4207665 [Google Scholar] [Crossref]
29. Momoh, J., Medjdoub, B., Ebohon, O. J., Ige, O., Young, B. E., & Ruoyu, J. (2024). The implications of adopting sustainable urbanism in developing resilient places in Abuja, Nigeria. International Journal of Building Pathology and Adaptation, 42(5), 914–931. https://doi.org/10.1108/IJBPA-03-2022-0043 [Google Scholar] [Crossref]
30. Naserikia, M., Hart, M. A., Nazarian, N., Bechtel, B., Lipson, M., & Nice, K. A. (2023). Land surface and air temperature dynamics: The role of urban form and seasonality. Science of The Total Environment, 905, 167306. https://doi.org/10.1016/j.scitotenv.2023.167306 [Google Scholar] [Crossref]
31. Nimish, G., Bharath, H. A., & Lalitha, A. (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sensing Applications: Society and Environment, 18, 100299. https://doi.org/10.1016/j.rsase.2020.100299 [Google Scholar] [Crossref]
32. Ogunbode, T. O., Oyebamiji, V. O., Sanni, D. O., Akinwale, E. O., & Akinluyi, F. O. (2025). Environmental impacts of urban growth and land use changes in tropical cities. Frontiers in Sustainable Cities, 6. https://doi.org/10.3389/frsc.2024.1481932 [Google Scholar] [Crossref]
33. Okacha, A., Salhi, A., Abdelrahman, K., Fattasse, H., Lahrichi, K., Bakhouya, K., & Mondal, B. K. (2024). Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation. Sustainability, 16(15), 6497. https://doi.org/10.3390/su16156497 [Google Scholar] [Crossref]
34. Panigrahi, M., & Sharma, A. (2025). Urban growth dynamics and its influence on land surface temperature in Bhubaneswar metropolitan city: a 1990–2021 analysis. Discover Applied Sciences, 7(2), 118. https://doi.org/10.1007/s42452-025-06535-y [Google Scholar] [Crossref]
35. Patel, S., Indraganti, M., & Jawarneh, R. N. (2024). Land surface temperature responses to land use dynamics in urban areas of Doha, Qatar. Sustainable Cities and Society, 104, 105273. https://doi.org/10.1016/j.scs.2024.105273 [Google Scholar] [Crossref]
36. Pauleit, S., Sauerwein, M., & Breuste, J. (2021). Urbanisation and Its Challenges for Ecological Urban Development. In Urban Ecosystems (pp. 1–39). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-63279-6_1 [Google Scholar] [Crossref]
37. Portela, C. I., Massi, K. G., Rodrigues, T., & Alcântara, E. (2020). Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices. Sustainable Cities and Society, 56, 102100. https://doi.org/10.1016/j.scs.2020.102100 [Google Scholar] [Crossref]
38. Prasomsup, W., Piyatadsananon, P., Aunphoklang, W., & Boonrang, A. (2020). Extraction Technic for Built-up Area Classification in Landsat 8 Imagery. International Journal of Environmental Science and Development, 11(1), 15–20. https://doi.org/10.18178/ijesd.2020.11.1.1219 [Google Scholar] [Crossref]
39. Qian, Y., Dong, Z., Yan, Y., & Tang, L. (2022). Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Science of The Total Environment, 833, 155218. https://doi.org/10.1016/j.scitotenv.2022.155218 [Google Scholar] [Crossref]
40. Roba, Z. R., & Tabor, K. W. (2025). Geospatial analysis of vegetation and land surface temperature for urban heat island mitigation in Hawassa City, Ethiopia. Scientific Reports, 15(1), 31786. https://doi.org/10.1038/s41598-025-17014-0 [Google Scholar] [Crossref]
41. Rowland, A., & Ebuka, A. O. (2024). ASSESSING THE IMPACT OF LAND COVER AND LAND USE CHANGE ON URBAN INFRASTRUCTURE RESILIENCE IN ABUJA, NIGERIA: A CASE STUDY FROM 2017 TO 2022. Structure and Environment, 16(1), 6–17. https://doi.org/10.30540/sae-2024-002 [Google Scholar] [Crossref]
42. Sari, N. M., Martono, D. N., Koestoer, R. H. S., & Kushardono, D. (2025). Remote Sensing-Based Urban Environmental Quality Indicators: A Review. Journal of Multidisciplinary Applied Natural Science, 5(1), 228–242. https://doi.org/10.47352/jmans.2774-3047.243 [Google Scholar] [Crossref]
43. Shi, F., & Li, M. (2021). Assessing Land Cover and Ecological Quality Changes under the New-Type Urbanization from Multi-Source Remote Sensing. Sustainability, 13(21), 11979. https://doi.org/10.3390/su132111979 [Google Scholar] [Crossref]
44. Sufiyan, B., Bello, I. E., Adamu Ja, I & Dahiru, M. K. (2023). Application of Remote Sensing and GIS in Mapping Urban Sprawl in Keffi, Nasarawa State, Nigeria. Nigerian Journal of Cartography and GIS, 16(1&2), 56-64. [Google Scholar] [Crossref]
45. Tiwari, A. K., & Kanchan, R. (2024). Analytical study on the relationship among land surface temperature, land use/land cover and spectral indices using geospatial techniques. Discover Environment, 2(1), 1. https://doi.org/10.1007/s44274-023-00021-1 [Google Scholar] [Crossref]
46. Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2021). Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng, 2(2), 459–484. https://doi.org/10.3390/civileng2020026 [Google Scholar] [Crossref]
47. Wang, J., & Wang, R. (2024). The Impact of Urbanization on Environmental Quality in Ecologically Fragile Areas: Evidence from Hengduan Mountain, Southwest China. Land, 13(4), 503. https://doi.org/10.3390/land13040503 [Google Scholar] [Crossref]
48. Yu, T., Jia, S., Zhang, Y., & Cui, X. (2025). How can urban expansion and ecological preservation be balanced? A simulation of the spatial dynamics of production-living-ecological spaces in the Huaihe River Eco-Economic Belt. Ecological Indicators, 171, 113192. https://doi.org/10.1016/j.ecolind.2025.113192 [Google Scholar] [Crossref]
49. Zhang, T., Sun, Y., Zhang, X., Yin, L., & Zhang, B. (2023). Potential heterogeneity of urban ecological resilience and urbanization in multiple urban agglomerations from a landscape perspective. Journal of Environmental Management, 342, 118129. https://doi.org/10.1016/j.jenvman.2023.118129 [Google Scholar] [Crossref]
50. Mshelia, Y. S., Onywere, S. M., &Letema, S. (2024). Modeling the spatial dynamics of land cover transitions and vegetation conditions in Abuja city, Nigeria. Urbanization, Sustainability and Society, 1(1), 115–132. [Google Scholar] [Crossref]
51. Amaechi, C. F., Enuneku, A. A., Okhai, S. O., &Okoduwa, K. A. (2023). Geospatial assessment of deforestation in federal capital territory Abuja, Nigeria from 1987 to 2021. Journal of Applied Sciences and Environmental Management, 27(11), 2457-2461. [Google Scholar] [Crossref]
53. Koko, A. F., Han, Z., Wu, Y., Abubakar, G. A., & Bello, M. (2022). Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sensing, 14(23), 6083. https://doi.org/10.3390/rs14236083 [Google Scholar] [Crossref]
54. Lawal, M., &Akanbi, O. B. (2024). Bayesian Factor Analysis of a Unidimensional Urban Sprawl Index in Ibadan, Nigeria. Asian Journal of Environment & Ecology, 23(12), 211–227. https://doi.org/10.9734/ajee/2024/v23i12644 [Google Scholar] [Crossref]
55. Taiwo, O. (2021). Modelling the spatiotemporal patterns of urban sprawl in Ibadan metropolis between 1984 and 2013 in Nigeria. Modeling Earth Systems and Environment, 8, 121-140. https://doi.org/10.1007/s40808-021-01095-7. [Google Scholar] [Crossref]
56. Onilude, O. O., &Vaz, E. (2020). Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci, 2(4), 80. https://doi.org/10.3390/sci2040080 [Google Scholar] [Crossref]
57. Obateru, R. O., Okhimamhe, A. A., Fashae, O. A., Aweda, E., Dragovich, D., & Conrad, C. (2024). Community-based assessment of the dynamics of urban landscape characteristics and ecosystem services in the rainforest and guinea savanna ecoregions of Nigeria. Journal of Environmental Management, 360, 121191. https://doi.org/10.1016/j.jenvman.2024.121191 [Google Scholar] [Crossref]
58. Chukwurah, G. O., John-nsa, C. O., Okeke, F., Chukwudi, E. C., &Ogorchukwu, I. M. (2022). Rapid spatial growth of cities and its planning implications for developing countries: a case study of Abuja, Nigeria. Indonesian Journal of Geography, 54(2). https://doi.org/10.22146/ijg.70316 [Google Scholar] [Crossref]
59. Koko, A., Yue, W., Abubakar, G., Hamed, R., &Alabsi, A. (2021). Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomatics, Natural Hazards and Risk, 12, 631 - 652. https://doi.org/10.1080/19475705.2021.1887940. [Google Scholar] [Crossref]
60. Gilbert, K. M., & Shi, Y. (2023). Urban Growth Monitoring and Prediction Using Remote Sensing Urban Monitoring Indices Approach and Integrating CA-Markov Model: A Case Study of Lagos City, Nigeria. Sustainability, 16(1), 30. https://doi.org/10.3390/su16010030 [Google Scholar] [Crossref]
61. Ilo, O., &Ezeodili, W. (2025). Urbanization and Economic Growth in Enugu Metropolis Enugu State Nigeria: The Nexus. Journal of Policy and Development Studies, 18(1), 132–147. https://doi.org/10.4314/jpds.v18i1.9 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact of Ownership Structure on Dividend Payout Policy of Listed Plantation Companies in Sri Lanka
- Urban Sustainability in North-East India: A Study through the lens of NER-SDG index
- Performance Assessment of Predictive Forecasting Techniques for Enhancing Hospital Supply Chain Efficiency in Healthcare Logistics
- The Fractured Self in Julian Barnes' Postmodern Fiction: Identity Crisis and Deflation in Metroland and the Sense of an Ending
- Impact of Flood on the Employment, Labour Productivity and Migration of Agricultural Labour in North Bihar