Use of Deep Eutectic Solvents for Plastic Waste Management : Towards a Green Solution for Recycling
Authors
INAMAT2, Département des sciences, Bâtiment Los Acebos, université Publique de Navarra, campus de Arrosadía, 31006 pamplona (Spain)
School of Chemistry, Polymers, and Materials (ECPM), University of Strasbourg (France)
Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis (Tunisia)
INAMAT2, Département des sciences, Bâtiment Los Acebos, université Publique de Navarra, campus de Arrosadía, 31006 pamplona (Spain)
Article Information
DOI: 10.47772/IJRISS.2025.910000630
Subject Category: Chemistry
Volume/Issue: 9/10 | Page No: 7708-7717
Publication Timeline
Submitted: 2025-10-28
Accepted: 2025-11-03
Published: 2025-11-19
Abstract
The management of plastic waste poses a significant environmental challenge, with large amounts of plastic ending up in landfills and oceans every year. Traditional recycling methods often fail, especially for complex plastics like multi-layer films and composites. Deep eutectic solvents (DES), a class of non-toxic and biodegradable solvents, offer a promising solution for plastic recycling. DES can dissolve and degrade a wide range of plastics, such as polystyrene (PS), polyethylene (PE), and polyethylene terephthalate (PET), by breaking polymer chains and transforming plastics into reusable products or valuable monomers. Compared to conventional recycling methods, DES offer several advantages, including selective dissolution of specific plastics, low environmental impact, and the potential for recycling at ambient temperatures, which reduces energy consumption. However, challenges remain, including high viscosity, selective solubility, and the need for solvent regeneration. The future of DES in plastic recycling lies in the development of improved solvent systems, their integration into industrial processes, and their use in green chemistry. Ultimately, DES offer a sustainable solution for enhancing plastic waste management and contributing to a circular economy.
Keywords
Plastic waste management, Deep eutectic solvents (DES), Recycling.
Downloads
References
1. Deeney M, Green R, Yan X, Dooley C, Yates J, Rolker HB, et al. Human health effects of recycling and reusing food sector consumer plastics: A systematic review and meta-analysis of life cycle assessments. J Clean Prod [Internet]. 2023;397(February):136567. Available from: https://doi.org/10.1016/j.jclepro.2023.136567 [Google Scholar] [Crossref]
2. Adam HB, Yousfi M, Maazouz A, Lamnawar K. Recycling of Multilayer Polymeric Barrier Films: an Overview of Recent Pioneering Works and Main Challenges. Macromol Mater Eng. 2025;310(7):1–25. [Google Scholar] [Crossref]
3. Tito E, dos Passos JS, Bensaid S, Pirone R, Biller P. Multilayer plastic film chemical recycling via sequential hydrothermal liquefaction. Resour Conserv Recycl [Internet]. 2023;197(June):107067. Available from: https://doi.org/10.1016/j.resconrec.2023.107067 [Google Scholar] [Crossref]
4. Marques GG, Couffin A, Hajji P, Inoubli R, Bounor-Legaré V, Fulchiron R. A Review on the Formulation and Rupture Properties of Polyethylene Terephthalate in a Mechanical Recycling Context. Ind Eng Chem Res [Internet]. 2024 Jan 17;63(2):887–920. Available from: https://doi.org/10.1021/acs.iecr.3c02376 [Google Scholar] [Crossref]
5. Conroy S, Zhang X. Theoretical insights into chemical recycling of polyethylene terephthalate (PET). Polym Degrad Stab [Internet]. 2024;223(March):110729. Available from: https://doi.org/10.1016/j.polymdegradstab.2024.110729 [Google Scholar] [Crossref]
6. Bohre A, Jadhao PR, Tripathi K, Pant KK, Likozar B, Saha B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. ChemSusChem. 2023;16(14). [Google Scholar] [Crossref]
7. Cafiero LM, De Angelis D, Tuccinardi L, Tuffi R. Current State of Chemical Recycling of Plastic Waste: A Focus on the Italian Experience. Sustain. 2025;17(3). [Google Scholar] [Crossref]
8. Klotz M, Oberschelp C, Salah C, Subal L, Hellweg S. The role of chemical and solvent-based recycling within a sustainable circular economy for plastics. Sci Total Environ [Internet]. 2024;906(July 2023):167586. Available from: https://doi.org/10.1016/j.scitotenv.2023.167586 [Google Scholar] [Crossref]
9. Schiavi PG, Altimari P, Sturabotti E, Giacomo Marrani A, Simonetti G, Pagnanelli F. Decomposition of Deep Eutectic Solvent Aids Metals Extraction in Lithium-Ion Batteries Recycling. ChemSusChem. 2022;15(18). [Google Scholar] [Crossref]
10. Puhan MA, Chandra D, Mosenifar Z, Ries A, Make B, Hansel NN, et al. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J Nat Prod. 2018;81(3):679–690. [Google Scholar] [Crossref]
11. Nomura K, Terwilliger P. Self-dual Leonard pairs Deep eutectic solvents ( DESs ) as powerful and recyclable catalysts solvents for the synthesis a. Green Process Synth [Internet]. 2019;8:568–76. Available from: https://doi.org/10.1515/gps-2019-0026 [Google Scholar] [Crossref]
12. Hua Y, Sun Y, Yan F, Wang S, Xu Z, Zhao B, et al. Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries. Chem Eng J [Internet]. 2022;436:133200. Available from: https://www.sciencedirect.com/science/article/pii/S1385894721047756 [Google Scholar] [Crossref]
13. Svärd M, Ma C, Forsberg K, Schiavi PG. Addressing the Reuse of Deep Eutectic Solvents in Li-Ion Battery Recycling: Insights into Dissolution Mechanism, Metal Recovery, Regeneration and Decomposition. ChemSusChem. 2024;17(20). [Google Scholar] [Crossref]
14. Azougagh O, Jilal I, Jabir L, El-Hammi H, Essayeh S, Mohammed N, et al. Dissolution mechanism of cellulose in a benzyltriethylammonium/urea deep eutectic solvent (DES): DFT-quantum modeling{,} molecular dynamics and experimental investigation. Phys Chem Chem Phys [Internet]. 2023;25(34):22870–88. Available from: http://dx.doi.org/10.1039/D3CP02335D [Google Scholar] [Crossref]
15. Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, et al. Application of deep eutectic solvents in analytical sample pretreatment (update 2017–2022). Part A: Liquid phase microextraction. Microchem J [Internet]. 2023;189:108509. Available from: https://www.sciencedirect.com/science/article/pii/S0026265X23001273 [Google Scholar] [Crossref]
16. Rollo M, Raffi F, Rossi E, Tiecco M, Martinelli E, Ciancaleoni G, et al. Pr ep rin t n ot pe er re v Pr ep rin t n ot pe er v ed. [Google Scholar] [Crossref]
17. Wei L, Zhang W, Yang J, Pan Y, Chen H, Zhang Z. The application of deep eutectic solvents systems based on choline chloride in the preparation of biodegradable food packaging films. Trends Food Sci Technol [Internet]. 2023;139:104124. Available from: https://www.sciencedirect.com/science/article/pii/S0924224423002376 [Google Scholar] [Crossref]
18. Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. Environ Res [Internet]. 2024;263:120140. Available from: https://www.sciencedirect.com/science/article/pii/S0013935124020474 [Google Scholar] [Crossref]
19. Zdanowicz M, Wilpiszewska K, Spychaj T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym [Internet]. 2018;200:361–80. Available from: https://www.sciencedirect.com/science/article/pii/S0144861718308701 [Google Scholar] [Crossref]
20. Yuan Z, Liu H, Yong WF, She Q, Esteban J. Status and advances of deep eutectic solvents for metal separation and recovery. 2022;12:1895–929. [Google Scholar] [Crossref]
21. Jorge R De, Ferreira V. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. 2024; [Google Scholar] [Crossref]
22. Huang C, Chen X, Wei C, Wang H, Gao H. Deep Eutectic Solvents as Active Pharmaceutical Ingredient Delivery Systems in the Treatment of Metabolic Related Diseases. 2021;12(December):1–9. [Google Scholar] [Crossref]
23. Jauregi P, Esnal-yeregi L, Labidi J. Natural deep eutectic solvents ( NADES ) for the extraction of bioactives : emerging opportunities in biorefinery applications. 2024;1–25. [Google Scholar] [Crossref]
24. Anuoluwapo E, Johannes O, Potgieter H. Effectiveness of acidic deep eutectic solvents in recovery of hazardous base metals from waste printed circuit boards. Environ Sci Pollut Res [Internet]. 2025;16361–79. Available from: https://doi.org/10.1007/s11356-025-36685-w [Google Scholar] [Crossref]
25. Nejrotti S, Antenucci A, Pontremoli C, Gontrani L, Barbero N, Carbone M, et al. Critical Assessment of the Sustainability of Deep Eutectic Solvents : A Case Study on Six Choline Chloride-Based Mixtures. 2022; [Google Scholar] [Crossref]
26. Dom P. Sustainability On the fate of deep eutectic solvents after their use as reaction media : the CO 2 production during downstream and ultimate disposal. 2024;608–15. [Google Scholar] [Crossref]
27. Gao W hao, Nie C chen, Li L, Yan S, Zhou W tao, Zhu X nan. Sustainable and efficient deep eutectic solvents in recycling of spent lithium-ion batteries: Recent advances and perspectives. J Clean Prod [Internet]. 2024;464:142735. Available from: https://www.sciencedirect.com/science/article/pii/S0959652624021838 [Google Scholar] [Crossref]
28. Mohd Razib AN, Md Sarip MS, Nik Daud NMA, Jainoo I. Review on Polyurethane Solubilization in Deep Eutectic Solvents (DES) for Plastic Recycling. Techno-Socio Ekon. 2025;18(1):60–72. [Google Scholar] [Crossref]
29. Vicente FA, Tkalec N, Likozar B. Responsive deep eutectic solvents: mechanisms{,} applications and their role in sustainable chemistry. Chem Commun [Internet]. 2025;61(6):1002–13. Available from: http://dx.doi.org/10.1039/D4CC05157B [Google Scholar] [Crossref]
30. Luo Y, Yin C, Ou L. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Sci Total Environ [Internet]. 2023;902:166095. Available from: https://www.sciencedirect.com/science/article/pii/S0048969723047204 [Google Scholar] [Crossref]
31. ZHU X lin, XU C ying, TANG J, HUA Y xin, ZHANG Q bo, LIU H, et al. Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Trans Nonferrous Met Soc China [Internet]. 2019;29(10):2222–8. Available from: https://www.sciencedirect.com/science/article/pii/S1003632619651289 [Google Scholar] [Crossref]
32. Liu M, Ma W, Zhang X, Liang Z, Zhao Q. Recycling lithium and cobalt from LIBs using microwave-assisted deep eutectic solvent leaching technology at low-temperature. Mater Chem Phys [Internet]. 2022;289:126466. Available from: https://www.sciencedirect.com/science/article/pii/S0254058422007726 [Google Scholar] [Crossref]
33. Ha GS, Al Mamunur Rashid M, Ha JM, Yoo CJ, Jeon BH, Jeong K, et al. Enhancing polyethylene terephthalate conversion through efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis. Chemosphere [Internet]. 2024;349(November 2023):140781. Available from: https://doi.org/10.1016/j.chemosphere.2023.140781 [Google Scholar] [Crossref]
34. Loukodimou A, Lovell C, Li T, Theodosopoulos G, Maniam KK, Paul S. Formulation and Characterization of Deep Eutectic Solvents and Potential Application in Recycling Packaging Laminates. Polymers (Basel). 2024;16(19):1–14. [Google Scholar] [Crossref]
35. Paparella AN, Perrone S, Salomone A, Messa F, Cicco L, Capriati V, et al. Use of Deep Eutectic Solvents in Plastic Depolymerization. Catalysts. 2023;13(7):1–19. [Google Scholar] [Crossref]
36. Tapia-Quirós P, Granados M, Sentellas S, Saurina J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? Sci Total Environ. 2024;912(November 2023). [Google Scholar] [Crossref]
37. Bjelić A, Hočevar B, Grilc M, Novak U, Likozar B. No Title. Rev Chem Eng [Internet]. 2022;38(3):243–72. Available from: https://doi.org/10.1515/revce-2019-0077 [Google Scholar] [Crossref]
38. Lin G, Tang Q, Huang H, Yu J, Li Z, Ding B. Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose [Internet]. 2022;29:3689–701. Available from: https://consensus.app/papers/process-optimization-and-comprehensive-utilization-of-lin-tang/8a54c192c0af5113afb2fb1d3b88e2c0/ [Google Scholar] [Crossref]
39. Yan G, Zhou Y, Zhao L, Wang W, Yang Y, Zhao X, et al. Recycling of deep eutectic solvent for sustainable and efficient pretreatment of corncob. Ind Crops Prod [Internet]. 2022; Available from: https://consensus.app/papers/recycling-of-deep-eutectic-solvent-for-sustainable-and-yan-zhou/28bfb8ebcee05fa8be87630220ecba38/ [Google Scholar] [Crossref]
40. Castro-Muñoz R, Karaça AC, Kharazmi MS, Boczkaj G, Hernández-Pinto FJ, Siddiqui SA, et al. Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications – a review. Crit Rev Food Sci Nutr [Internet]. 2024;64(30):10970–86. Available from: https://doi.org/10.1080/10408398.2023.2230500 [Google Scholar] [Crossref]
41. Li L, Liu Y, Wang Z, Liu H. Development and applications of deep eutectic solvents derived functional materials in chromatographic separation. J Sep Sci [Internet]. 2020; Available from: https://consensus.app/papers/development-and-applications-of-deep-eutectic-solvents-li-liu/d4c0e9e80a1a5d52a4a850e32f3458ee/ [Google Scholar] [Crossref]
42. Ha GS, Rashid MAM, Oh DH, Ha JM, Yoo CJ, Jeon BH, et al. Integrating experimental and computational approaches for deep eutectic solvent-catalyzed glycolysis of post-consumer polyethylene terephthalate. Waste Manag [Internet]. 2024;174(November 2023):411–9. Available from: https://doi.org/10.1016/j.wasman.2023.12.028 [Google Scholar] [Crossref]
43. Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, et al. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals. 2024;17(10). [Google Scholar] [Crossref]
44. Picciolini E, Pastore G, Del Giacco T, Ciancaleoni G, Tiecco M, Germani R. aquo-DESs: Water-based binary natural deep eutectic solvents. J Mol Liq [Internet]. 2023;383:122057. Available from: https://www.sciencedirect.com/science/article/pii/S0167732223008607 [Google Scholar] [Crossref]
45. Vittor L, Duarte T, Bel S, Tavares FW. Assessing Viscosity in Sustainable Deep Eutectic Solvents and Cosolvent Mixtures : An Artificial Neural Network-Based Molecular Approach. 2024; [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications