AI-Powered Real-Time Recommendations in Livestream Tourism Marketing: Effects on Customer Engagement and Booking Decisions - A Systematic Review

Authors

Taylor Harris, F. S. ORCID icon for Taylor Harris, F. S.

Central China Normal University, No. 152 Luoyu Road, Hongshan District, Wuhan, Hubei Province, 430079, PRC (China)

La Geer-Jeremiah, A. O. S. ORCID icon for La Geer-Jeremiah, A. O. S.

Central China Normal University, No. 152 Luoyu Road, Hongshan District, Wuhan, Hubei Province, 430079, PRC (China)

Article Information

DOI: 10.47772/IJRISS.2025.914MG00220

Subject Category: Management

Volume/Issue: 9/14 | Page No: 2854-2871

Publication Timeline

Submitted: 2025-11-02

Accepted: 2025-11-15

Published: 2025-11-22

Abstract

The integration of AI-powered real-time recommendations is transforming livestream tourism marketing, yet a unified understanding of its impact on customer engagement and booking decisions is absent. Following the PRISMA protocol, this systematic review synthesizes evidence from 15 empirical studies to address this gap. The analysis is guided by the theoretical frameworks of the Stimulus-Organism-Response (S-O-R) model and Uses and Gratifications (U&G) theory. The analysis reveals that AI’s power is not direct but psychologically mediated, operating through a critical human-AI synergy. The streamer’s authenticity is foundational for building trust, while the AI functions as a real-time decision-support tool, amplifying rather than replacing the human element. However, a key paradox emerges: while personalization boosts engagement, it risks perceived intrusiveness and suppresses the serendipitous discovery vital to tourism. We conclude that success depends on designing for ‘value-centric transparency,’ where AI augments the human connection. Given the review’s heavy reliance on data from the Chinese market, we critically highlight the urgent need for cross-cultural validation and a decisive shift from studying behavioral intentions to tracking actual bookings.

Keywords

AI-powered recommendations, livestream commerce, customer engagement

Downloads

References

1. Antczak, B. (2025). The Impact of Artificial Intelligence on Tourism Industry: A Marketing Perspective.Journal of Modern Science, 62(2), 450-472. https://doi.org/https://doi.org/10.13166/jms/208128 [Google Scholar] [Crossref]

2. Brignardello-Petersen, R., Santesso, N., & Guyatt, G. H. (2024). Systematic reviews of the literature: an introduction to current methods. American Journal of Epidemiology, kwae232. https://doi.org/https://doi.org/10.1093/aje/kwae232 [Google Scholar] [Crossref]

3. Bulchand-Gidumal, J., William Secin, E., O’Connor, P., & Buhalis, D. (2024). Artificial intelligence’s impact on hospitality and tourism marketing: exploring key themes and addressing challenges. Current Issues in Tourism, 27(14), 2345-2362. https://doi.org/https://doi.org/10.1080/13683500.2023.2229480 [Google Scholar] [Crossref]

4. Chen, C., & Wei, Z. (2024). Role of Artificial Intelligence in travel decision making and tourism product selling. Asia Pacific Journal of Tourism Research, 29(3), 239-253. https://doi.org/https://doi.org/10.1080/10941665.2024.2317390 [Google Scholar] [Crossref]

5. Chen, J., Luo, J., & Zhou, T. (2024). Research on determinants affecting users’ impulsive purchase intention in live streaming from the perspective of perceived live streamers’ ability. Behavioral Sciences, 14(3), 190. https://doi.org/doi: 10.3390/bs14030190 [Google Scholar] [Crossref]

6. Cheng, Y., & Jiang, H. (2022). Customer–brand relationship in the era of artificial intelligence: understanding the role of chatbot marketing efforts. Journal of Product & Brand Management, 31(2), 252-264. https://doi.org/https://doi.org/10.1108/JPBM-05-2020-2907 [Google Scholar] [Crossref]

7. Cohen, S. A., Prayag, G., & Moital, M. (2014). Consumer behaviour in tourism: Concepts, influences and opportunities. Current Issues in Tourism, 17(10), 872-909. https://doi.org/https://doi.org/10.1080/13683500.2013.850064 [Google Scholar] [Crossref]

8. Ding, L., Antonucci, G., & Venditti, M. (2025). Unveiling user responses to AI-powered personalised recommendations: a qualitative study of consumer engagement dynamics on Douyin. Qualitative Market Research: An International Journal, 28(2), 234-255. https://doi.org/https://doi.org/10.1108/QMR-11-2023-0151 [Google Scholar] [Crossref]

9. Han, C., & Cumming, T. M. (2022). Teachers’ beliefs about the provision of education for students with autism spectrum disorder: A systematic review. Review Journal of Autism and Developmental Disorders, 11(3), 545-563. https://doi.org/https://doi.org/10.1007/s40489-022-00350-6 [Google Scholar] [Crossref]

10. Hochreiter, V., Benedetto, C., & Loesch, M. (2022). The stimulus-organism-response (SOR) paradigm as a guiding principle in environmental psychology: comparison of its usage in consumer behavior and organizational culture and leadership theory. Global Business Conference 2022 Proceedings, [Google Scholar] [Crossref]

11. Howie, C. (2019). Conducting your first systematic review. PsyPag Quarterly. https://doi.org/https://doi.org/10.53841/bpspag.2019.1.113.32 [Google Scholar] [Crossref]

12. Kim, M. (2023). Parasocial interactions in digital tourism: Attributes of live streamers and viewer engagement dynamics in South Korea. Behavioral Sciences, 13(11), 953. https://doi.org/https://doi.org/10.3390/bs13110953 [Google Scholar] [Crossref]

13. Kmet, L. M., Cook, L. S., & Lee, R. C. (2004). Standard quality assessment criteria for evaluating primary research papers from a variety of fields. https://doi.org/https://doi.org/10.7939/R37M04F16 [Google Scholar] [Crossref]

14. Kotler, P. (2022). Marketing for hospitality and tourism. UK.: Pearson Education Limited. [Google Scholar] [Crossref]

15. Li, C., & Zheng, W. (2025). Nipping trouble in the bud: A proactive tourism recommender system. Information & Management, 62(1), 104062. https://doi.org/https://doi.org/10.1016/j.im.2024.104062 [Google Scholar] [Crossref]

16. Liu, J., Hsu, F. C., Ma, Y., & Huang, Y. (2024). Personal Brand Equity and Telepresence's Role in Tourism Electronic Commerce Live Streaming. International Journal of Tourism Research, 26(5), e2767. https://doi.org/https://doi.org/10.1002/jtr.2767 [Google Scholar] [Crossref]

17. Liu, X., Zhang, L., & Chen, Q. (2022). The effects of tourism e-commerce live streaming features on consumer purchase intention: The mediating roles of flow experience and trust. Frontiers in psychology, 13, 995129. https://doi.org/https://doi.org/10.3389/fpsyg.2022.995129 [Google Scholar] [Crossref]

18. Lo, C., Yu, H., Yin, X., Shetty, K., He, C., Hu, K., Platz, J. M., Ilardi, A., & Madhvanath, S. (2021). Page-level optimization of e-commerce item recommendations. Proceedings of the 15th ACM Conference on Recommender Systems, [Google Scholar] [Crossref]

19. López Naranjo, A. L., Puente Riofrío, M. I., Carrasco Salazar, V. A., Erazo Rodríguez, J. D., & Buñay-Guisñan, P. A. (2025). Artificial intelligence in the tourism business: a systematic review. Frontiers in Artificial Intelligence, 8, 1599391. https://doi.org/https://doi.org/10.3389/frai.2025.1599391 [Google Scholar] [Crossref]

20. McGarty, A. M., & Melville, C. A. (2018). Parental perceptions of facilitators and barriers to physical activity for children with intellectual disabilities: A mixed methods systematic review. Research in developmental disabilities, 73, 40-57. https://doi.org/https://doi.org/10.1016/j.ridd.2017.12.007 [Google Scholar] [Crossref]

21. Mei, L., Tang, N., Zeng, Z., & Shi, W. (2025). Artificial Intelligence Technology in Live Streaming E-commerce: Analysis of Driving Factors of Consumer Purchase Decisions. International Journal of Computers Communications & Control, 20(1). [Google Scholar] [Crossref]

22. https://doi.org/https://doi.org/10.15837/ijccc.2025.1.6871 [Google Scholar] [Crossref]

23. Moghddam, H. A., Mortimer, G., Ahmadi, H., & Sharif-Nia, H. (2025). How livestream engagement inspires tourist purchasing behaviour: A multi-study approach. International Journal of Information Management, 83, 102903. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2025.102903 [Google Scholar] [Crossref]

24. Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of marketing, 58(3), 20-38. https://doi.org/https://doi.org/10.1177/002224299405800 [Google Scholar] [Crossref]

25. Munn, Z., Barker, T. H., Moola, S., Tufanaru, C., Stern, C., McArthur, A., Stephenson, M., & Aromataris, E. (2020). Methodological quality of case series studies: an introduction to the JBI critical appraisal tool. JBI evidence synthesis, 18(10), 2127-2133. https://doi.org/10.11124/JBISRIR-D-19-00099 [Google Scholar] [Crossref]

26. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/https://doi.org/10.1136/bmj.n71 [Google Scholar] [Crossref]

27. Philp, M., & Nepomuceno, M. V. (2024). How reviews influence product usage post-purchase: An examination of video game playtime. Journal of Business Research, 172, 114456. https://doi.org/https://doi.org/10.1016/j.jbusres.2023.114456 [Google Scholar] [Crossref]

28. Qu, C., Dai, S., Guo, K., Zhao, L., Niu, Y., Zhang, X., & Xu, J. (2025). KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation. arXiv preprint arXiv:2508.05633. https://doi.org/https://doi.org/10.48550/arXiv.2508.05633 [Google Scholar] [Crossref]

29. Seabra, C., Reis, P., & Abrantes, J. L. (2020). The influence of terrorism in tourism arrivals: A longitudinal approach in a Mediterranean country. Annals of tourism research, 80, 102811. https://doi.org/doi:10.1016/j.annals.2019.102811 [Google Scholar] [Crossref]

30. Sichach, M. (2023). Uses and gratifications theory-background, history and limitations. History and Limitations (November 17, 2023). https://doi.org/http://dx.doi.org/10.2139/ssrn.4729248 [Google Scholar] [Crossref]

31. Tolloso, M., Bacciu, D., Mokarizadeh, S., & Varesi, M. (2025). Real-time and personalized product recommendations for large e-commerce platforms. International Conference on Artificial Neural Networks, [Google Scholar] [Crossref]

32. Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Annals of tourism research, 81, 102883. https://doi.org/https://doi.org/10.1016/j.annals.2020.102883 [Google Scholar] [Crossref]

33. Wu, Y., & Yusof, Y. (2024). Emerging Trends in Real-time Recommendation Systems: A Deep Dive into Multi-behavior Streaming Processing and Recommendation for E-commerce Platforms. J. Internet Serv. Inf. Secur, 14(4), 45-66. https://doi.org/https://orcid.org/0000-0002-2720-2441 [Google Scholar] [Crossref]

34. Xie, C., Yu, J., Huang, S. S., & Zhang, J. (2022). Tourism e-commerce live streaming: Identifying and testing a value-based marketing framework from the live streamer perspective. Tourism management, 91, 104513. https://doi.org/https://doi.org/10.1016/j.tourman.2022.104513 [Google Scholar] [Crossref]

35. Zhang, L., & Wu, X. (2025). Exploring the underlying mechanisms of customers’ intention to adopt product recommendations from live streamers: A moderated mediation approach. PloS one, 20(2), e0314682. https://doi.org/https://doi.org/10.1371/journal.pone.0314682 [Google Scholar] [Crossref]

36. Zhang, Z., Qin, M., Li, Z., & Zhu, H. (2025). The impact of travel live streaming on tourists’ travel intention on the spot. PloS one, 20(10), e0333811. https://doi.org/doi:10.1371/journal.pone.0333811 [Google Scholar] [Crossref]

37. Zheng, S., Wu, M., & Liao, J. (2022). The impact of destination live streaming on viewers’ travel intention. Current Issues in Tourism, 26(2), 184-198. [Google Scholar] [Crossref]

38. https://doi.org/https://doi.org/10.1080/13683500.2022.2117594 [Google Scholar] [Crossref]

39. Zhou, Y., Liu, S. S., Xu, X., & Cheng, T. (2025). Enhancing competitive advantage through AI-driven live streaming sales. IEEE Transactions on Engineering Management. [Google Scholar] [Crossref]

40. https://doi.org/10.1109/TEM.2025.3550400 [Google Scholar] [Crossref]

41. Zhu, Y., Zhang, R., Zou, Y., & Jin, D. (2023). Investigating customers’ responses to artificial intelligence chatbots in online travel agencies: The moderating role of product familiarity. Journal of Hospitality and Tourism Technology, 14(2), 208-224. https://doi.org/https://doi.org/10.1108/JHTT-02-2022-0041 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles