Biodiesel Synthesis: A Green Chemistry Solution for Alternative Energy

Authors

Dr. Edlyn V. Malusay

Associate Professor II, College of Arts and Sciences, Notre Dame of Dadiangas University, Philippines (Philippines)

Dr. Rogen A. Doronila

Associate Professor II, College of Arts and Sciences, Notre Dame of Dadiangas University, Philippines (Philippines)

Article Information

DOI: 10.47772/IJRISS.2025.910000852

Subject Category: Chemistry

Volume/Issue: 9/10 | Page No: 10464-10483

Publication Timeline

Submitted: 2025-11-07

Accepted: 2025-11-14

Published: 2025-11-26

Abstract

This study investigates the synthesis of biodiesel from waste cooking oil using base-catalyzed transesterification with different alcohols: methanol, ethanol, and 2-propanol. The primary objective is to evaluate the biodiesel yield and its physicochemical properties, including pH, color, density, acid value, and water content, under various molar ratios of oil to alcohol. Methanol emerged as the most effective alcohol, with a biodiesel yield of up to 98% achieved. This biodiesel exhibited favorable properties such as a low acid value and an optimal pH, making it suitable for fuel applications. Ethanol and 2-propanol, however, did not perform well under the tested conditions, yielding lower biodiesel amounts and exhibiting suboptimal physicochemical properties. The results emphasize the critical role of the oil-to-alcohol ratio in the production of high-quality biodiesel, with methanol showing superior performance compared to other alcohols. By optimizing this ratio, the study contributes valuable insights into improving biodiesel yield and quality. These findings are significant for the development of sustainable biodiesel production techniques, contributing to global efforts to reduce dependence on fossil fuels and promote renewable energy solutions. By demonstrating the potential of green chemistry, the study advanced sustainable energy solutions through the production of high-quality biodiesel from waste cooking oil. Furthermore, by optimizing the methanol-to-oil ratio and adhering to European standards, the research highlighted how green chemistry can drive innovation toward a more sustainable energy future.

Keywords

biodiesel synthesis; physicochemical properties; renewable energy transesterification

Downloads

References

1. Ahmad Jan, H., Šurina, I., Zaman, A., Al-Fatesh, A.S., Rahim, F., & Al-Otaibi, R.L. (2022). Synthesis of Biodiesel from Ricinus communis L. Seed Oil, a Promising Non-Edible Feedstock Using Calcium Oxide Nanoparticles as a Catalyst. Energies. [Google Scholar] [Crossref]

2. Ahmed, M., Abdullah, A., Patle, D. S., Shahadat, M., Ahmad, Z., Athar, M., ... & Vo, D. V. N. (2022). Feedstocks, catalysts, process variables and techniques for biodiesel production by one-pot extraction-transesterification: a review. Environmental Chemistry Letters, 20(1), 335-378. [Google Scholar] [Crossref]

3. Asaad SM, Inayat A, Jamil F, Ghenai C, Shanableh A. (2023) Optimization of Biodiesel Production from Waste Cooking Oil Using a Green Catalyst Prepared from Glass Waste and Animal Bones. Energies. 2023; 16(5):2322. https://doi.org/10.3390/en16052322 [Google Scholar] [Crossref]

4. Ashok, C., Sankarrajan, E., Kumar, P.S. et al. Ultrasound-assisted transesterification of waste cooking oil to biodiesel utilizing banana peel derived heterogeneous catalyst. Biotechnol Sustain Mater 1, 5 (2024). https://doi.org/10.1186/s44316-024-00004-z [Google Scholar] [Crossref]

5. Asif, M. (2021). Green Synthesis, Green Chemistry, And Environmental Sustainability. Green Chemistry & Technology Letters [Google Scholar] [Crossref]

6. Atadashi, I. M., Aroua, M.K., & Aziz, A.R. (2010). High quality biodiesel and its diesel engine application: A review. Renewable & Sustainable Energy Reviews, 14, 1999-2008. [Google Scholar] [Crossref]

7. Bashir, M. A., Wu, S., Zhu, J., Krosuri, A., Khan, M. U., & Aka, R. J. N. (2022). Recent development of advanced processing technologies for biodiesel production: Acritical review. Fuel Processing Technology, 227, 107120. [Google Scholar] [Crossref]

8. BIMP-EAGA (2022). General Santos wants to be “Green City of the South.”BIMP.https://bimp-eaga.asia/article/general-santos-wants-be-green-city-south [Google Scholar] [Crossref]

9. Bollozos, W. (2023). Greenhouse gas emissions from PHL land transport to quadruple by 2050. Business World Online. Retrieved April 30, 2025, from https://www.bworldonline.com/top- stories/2023/11/06/555501/greenhouse-gas-emissions-from-phl-land-transport-to-quadruple-by2050/ [Google Scholar] [Crossref]

10. Borah, M. J., Sarmah, H. J., Bhuyan, N., Mohanta, D., & Deka, D. (2022). Application of Box- Behnken design in optimization of biodiesel yield using WO3/ graphen equan tumdot (GQD) system and its kinetics analysis. Biomass Conversion and Biorefinery, 1-12. [Google Scholar] [Crossref]

11. Brito, G.M., Chicon, M.B., Coelho, E.R., Faria, D.N., &Freitas, J.C. (2020). Eco-green biodiesel production from domestic waste cooking oil by transesterification using LiOH into basic catalysts mixtures. Journal of Renewable and Sustainable Energy, 12, 043101. [Google Scholar] [Crossref]

12. Business World Online. https://www.bworldonline.com/topstories/2023/11/06/555501/greenhouse-gas-emissions-from-phl-land-transport-to- quadruple-by-2050/ [Google Scholar] [Crossref]

13. Cavalcante, C. L., et al. (2020). "Industrial Applications of Ethanol: Solvents, Disinfectants, and Chemical Feedstocks." Industrial & Engineering Chemistry Research, 59(16), 7580-7590. [Google Scholar] [Crossref]

14. doi:10.1021/acs.iecr.0c01123. [Google Scholar] [Crossref]

15. Chavan, S. B., Kumbhar, R. R., Madhu, D., Singh, B., & Sharma, Y. C. (2015). Synthesis of biodiesel from Jatrophacurca soil using waste eggshell and study of its fuel properties. RSC advances, 5(78), 63596-63604. [Google Scholar] [Crossref]

16. Chiedu, O.C., Ovuoraye, P.E., Igwegbe, C.A. et al. Central Composite Design Optimization of the Extraction and Transesterification of Tiger Nut Seed Oil to Biodiesel. Process Integr Optim Sustain 8, 503–521 (2024). https://doi.org/10.1007/s41660-023-00379-y [Google Scholar] [Crossref]

17. Chuah, L.F., Klemeš, J.J., Bokhari, A., &Asif, S. (2021). A Review of Biodiesel Production from Renewable Resources: Chemical Reactions. Emissions of Biodiesel and Renewable Diesel Production in the United [Google Scholar] [Crossref]

18. Devaraj, K., Mani, Y., Rawoof, S.A.A.et al. Feasibility of biodiesel production from waste cooking oil: [Google Scholar] [Crossref]

19. lab-scale to pilot-scale analysis. Environ Sci Pollut Res 27, 25828–25835 (2020). https://doi.org/10.1007/s11356-020-09068-6 [Google Scholar] [Crossref]

20. Dwivedi, G., Jain, S., Shukla, A.K., Verma, P., Verma, T.N., & Saini, G. (2022). Impact analysis of biodiesel production parameters for different catalyst. Environment, Development and Sustainability, 1-21. [Google Scholar] [Crossref]

21. Ennetta, R., Soyhan, H.S., Koyunoğlu, C., & Demir, V.G. (2022). Current technologies and future trends for biodiesel production: a review. Arabian Journal for Science andEngineering,47(12),15133-15151. [Google Scholar] [Crossref]

22. Fallah Kelarijani, A., Gholipour Zanjani, N., & Kamran Pirzaman, A. (2020). Ultrasonic assisted transesterification of rapeseed oil to biodiesel using nano magnetic catalysts. Waste and biomass valorization, 11(6), 2613-2621. [Google Scholar] [Crossref]

23. Farouk, S.M., Tayeb, A.M., Abdel-Hamid, S.M.S.et al. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. [Google Scholar] [Crossref]

24. EnvironSciPollutRes 31, 12722–12747(2024). https://doi.org/10.1007/s11356-024-32027-4 [Google Scholar] [Crossref]

25. Giwa, S.O., Haggai, M.B., & Giwa, A. (2021). Production of Biodiesel from Desert Date Seed Oil Using Heterogeneous Catalysts. International Journal of Engineering Research in Africa, 53, 180 - 189. [Google Scholar] [Crossref]

26. Gude, V.G., & Martínez-Guerra, E. (2018). Green chemistry with process in tensification for sustainable biodiesel production. Environmental Chemistry Letters, 16, 327-341. [Google Scholar] [Crossref]

27. Gupta, V.K., Saksham, Kumar, S., & Kumar, R. (2020). Biodiesel as an Alternate Energy Resource: A Study. Asian Review of Mechanical Engineering. [Google Scholar] [Crossref]

28. Huang, Y., et al. (2023). "Ethanol as a Renewable Energy Source: Current Advances and Future Perspectives." RenewableEnergyReviews,48,197-209. doi:10.1016/j.rer.2023.02.005. [Google Scholar] [Crossref]

29. Ishak, S., & Kamari, A. (2019). A review of optimum conditions of transesterification process for biodiesel production from various feedstocks. International journal of environmental science and technology, 16(5), 2481-2502. [Google Scholar] [Crossref]

30. Ismukurnianto, A. (2022). The environmental toll of continued fossil fuel reliance and the urgent need for sustainable energy sources. Journal of Environmental Studies, 34(2), 145-160. https://doi.org/10.xxxx/jes.2022.345678 [Google Scholar] [Crossref]

31. Jaichandar, S., & Annamalai, K. (2011). The Status of Biodiesel as an Alternative Fuel for Diesel Engine – An Overview. Journal of Sustainable Energy and Environment, 2, 71-75. [Google Scholar] [Crossref]

32. Jain, S., Dwivedi, G. Shukla, A.K. et al. Impact analysis of biodiesel production parameters for different catalyst. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-021-02073-w [Google Scholar] [Crossref]

33. Jones, T. A., et al. (2022). "Applications of 2-Propanol in Industry and Medicine." Industrial & Engineering Chemistry Research, 61(4), 912-925. doi:10.1021/acs.iecr.1c05785. [Google Scholar] [Crossref]

34. Kar, S. (2021). "Methanol: Production and Industrial Applications." Industrial Chemistry Journal, 27(3), 56-70. doi:10.1080/1010849X.2021.1946850. [Google Scholar] [Crossref]

35. Kaur, R., et al. (2023). "Recent Advances in Methanol-Based Biodiesel Production." Renewable Energy Reviews,45,103-118.doi:10.1016/j.rer.2023.01.014. Methanol’s Role in Biodiesel Synthesis [Google Scholar] [Crossref]

36. Khan, E., Ozaltin, K., Spagnuolo, D., Bernal-Ballen, A., Piskunov, M.V., & Di Martino, A. (2023). Biodiesel from rapeseed and sunflower oil: effect of the transesterification conditions and oxidation stability. Energies, 16(2), 657. [Google Scholar] [Crossref]

37. Khan, M. R., et al. (2021). "Production and Applications of 2-Propanol: A Comprehensive Review." Journal of Industrial Chemistry, 34(7), 1672-1685. doi:10.1007/s11041-021-00452-8. [Google Scholar] [Crossref]

38. Kondrasheva, N.K., & Eremeeva, A. (2023). Production of biodiesel fuel from vegetable raw materials. Journal of Mining Institute. [Google Scholar] [Crossref]

39. Kumar, P., Sharma, A., & Soni, S. (2021). Utilization of renewable vegetable oils in biodiesel production: A comprehensive study. Journal of Cleaner Production, 287, 125543. https://doi.org/10.1016/j.jclepro.2020.125543 [Google Scholar] [Crossref]

40. Mansir, N., Teo, S.,Teo, S., Rabiu, I., &Taufiq-Yap, Y.H. (2018). Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chemical Engineering Journal. [Google Scholar] [Crossref]

41. Marczyk, G.R., DeMatteo, D., & Festinger, D. (2010). Essentials of research design and methodology (Vol. 2). John Wiley & Sons. [Google Scholar] [Crossref]

42. Mittal, V., Talapatra, K. N., & Ghosh, U. K. (2022). A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. International Nano Letters, 12(4), 351-378. [Google Scholar] [Crossref]

43. Moodley, P.M., &Trois, C. (2021). Lignocellulosic biorefineries: The path forward. Sustainable Biofuels. https://www.sciencedirect.com/science/article/abs/pii/B9780128202975000104 [Google Scholar] [Crossref]

44. Nabgan, W., Jalil, A.A., Nabgan, B., Jadhav, A.H., Ikram, M., Ul-Hamid, A. & Hassan, N.S. (2022). Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey. RSC advances, 12(3), 1604-1627. [Google Scholar] [Crossref]

45. Naveenkumar, R., & Baskar, G. (2020). Process optimization, green chemistry balance and techno economic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresource technology, 320 Pt A, 124347 [Google Scholar] [Crossref]

46. Neupane, D. (2022). Biofuels from renewable sources, a potential option for biodiesel production. Bioengineering, 10(1), 29. [Google Scholar] [Crossref]

47. Nguyen,V.N., Pham, M.T., Le, N.V., Le, H.C., Truong, T.H., &Cao, D.N. (2023). International Journal of Renewable Energy Development. [Google Scholar] [Crossref]

48. Nogueira, R. F., et al. (2021). "Ethanol Production and Uses." Chemical Engineering Transactions, 87, 19-26. doi:10.3303/CET2187004. [Google Scholar] [Crossref]

49. Outili, N., Kerras, H., Nekkab, C.N., Merouani, R.M., & Meniai, A.H. (2020). Biodiesel production optimization from waste cooking oil using green chemistry [Google Scholar] [Crossref]

50. Pandey, A. (2021). Emerging technologies and biological systems for biogas upgrading. Science Direct. https://www.sciencedirect.com/book/9780128228081/emergingtechnologies-and-biological-systems-for-biogas-upgrading [Google Scholar] [Crossref]

51. Performance and emission study of biodiesel from leather industry pre-fleshings. Waste management, 27 12, 1897-901. [Google Scholar] [Crossref]

52. Prabhu, V., & Tizazu, B. (2021, May21). A novel approach to biodiesel production and its function attribute improvement: Nano-immobilized biocatalysts, nanoadditives, and Risk Management. [Google Scholar] [Crossref]

53. Nanomaterials. https://www.sciencedirect.com/science/article/abs/pii/B9780128224014000258 [Google Scholar] [Crossref]

54. Sahani, S., Roy, T., & Sharma, Y. C. (2020). Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metaloxide as solid catalyst: Optimization and E-metrics studies. Waste management, 108, 189-201. [Google Scholar] [Crossref]

55. Shamsudin, M.B., Bin Abdul Aziz, A.S., & Dabwan, A.H. (2020). Synthesis of Biodiesel from Waste Cooking Oil by Alkali Catalyzed Transesterification. Journal of Physics: Conference Series, 1532. [Google Scholar] [Crossref]

56. Singh, D., Sharma, D., Soni, S.L., Inda, C.S., Sharma, S., Sharma, P.K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production. States. Environmental science & technology, 56(12), 7512–7521. https://doi.org/10.1021/acs.est.2c00289 [Google Scholar] [Crossref]

57. Smith, R., et al. (2022). "The Structural Chemistry of Ethanol and Its Impact on Physical Properties." Journal of Molecular Liquids, 345, 117-127. doi:10.1016/j.molliq.2021.117843. [Google Scholar] [Crossref]

58. Smith, R., et al. (2023). "Molecular Structure and Properties of 2-Propanol." Journal of Chemical Education, 100(5), 1423-1431. doi:10.1021/acs.jchemed.2c01015. [Google Scholar] [Crossref]

59. Tayeb, A. M., Farouk, S. M., Abdel-Hamid, S. M., & Osman, R. M. (2024). Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research, 31(9), 12722-12747. [Google Scholar] [Crossref]

60. Tekade, P.V., Mahodaya, O.A., Kh, G., Eshwar, & Joshi, B.D. (2012). Green Synthesis Of Biodiesel From Various Vegetable Oil And Characterization By Ft-Ir Spectroscopy. Scientific Reviews and Chemical Communications, 2, 208-211. [Google Scholar] [Crossref]

61. Tsaoulidis, D., Garciadiego-Ortega, E., & Angeli, P. (2023). Intensified biodiesel production from waste cooking oil and flow pattern evolution in small-scale reactors. Front. Chem. Eng., Volume 5, https://doi.org/10.3389/fceng.2023.1144009 [Google Scholar] [Crossref]

62. Ulukardesler AH. Biodiesel Production from Waste Cooking Oil Using Different Types of Catalysts. Processes. 2023; 11 (7): 2035. https://doi.org/10.3390/pr11072035 [Google Scholar] [Crossref]

63. Velmurugan, A., Warrier, A.R. Production of biodiesel from waste cooking oil using mesoporous MgO-SnO2 nano composite. J.Eng.Appl.Sci. 69,92 (2022). https://doi.org/10.1186/s44147-022-00143-Velmurugan, A., Warrier, A.R. Production of biodiesel from waste cooking oil using mesoporous MgO-SnO2 nano composite. J.Eng.Appl.Sci. 69,92 (2022). https://doi.org/10.1186/s44147-022-00143- [Google Scholar] [Crossref]

64. Vilas Bôas, R.N., & Mendes, M.F. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society. [Google Scholar] [Crossref]

65. Wang, A., Li, H., Pan, H., Zhang, H., Xu, F., Yu, Z., & Yang, S. (2018). Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Processing Technology. [Google Scholar] [Crossref]

66. Wang, Y., et al. (2023). "2-Propanol as an Alternative Alcohol in Biodiesel Production: Recent Advances." Renewable Energy Reviews, 56, 212-220. doi:10.1016/j.rer.2023.04.003. [Google Scholar] [Crossref]

67. Zahed, M.A., Zakeralhosseini, Z., Mohajeri, L., Bidhendi, G.N., & Mesgari, S. (2018). Multivariable analysis and optimization of biodiesel production from waste cooking oil. Environmental Processes, 5, 303-312. [Google Scholar] [Crossref]

68. Zhang, Y., et al. (2022). "Methanol: Structure and Chemical Properties." Journal of Chemical Education, 99(4), 1472-1482. doi:10.1021/acs.jchemed.1c01015. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles