Leveraging Data Analytics to Enhance Customer Experience in the Food and Beverage (F&B) Industry: A Review of Practices and Strategies
Authors
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
School of Technology, Asia Pacific University of Technology and Innovation (Malaysia)
Fakulti Keusahawanan dan Technology, University Malaysia Kelantan (Malaysia)
Article Information
Publication Timeline
Submitted: 2025-11-06
Accepted: 2025-11-12
Published: 2025-12-18
Abstract
The rapid digital transformation in the food and beverage (F&B) industry requires businesses to continuously adapt to evolving customer expectations, technology integration, and competitive pressures. This review examines how data analytics enhances customer experience in F&B small and medium enterprises (SMEs), particularly within the urban context of Kuala Lumpur. By analysing consumer purchasing behaviour, payment methods, frequently ordered food categories, and customer feedback from delivery applications and social media platforms, data analytics enable businesses to identify emerging patterns, personalise services, and design more effective promotional strategies. Furthermore, data-driven insights improve operational efficiency, strengthen customer relationships, and enhance profitability. This study also proposes a strategic framework for adopting data analytics in the F&B sector, with emphasis on digital transformation, personalised services, and decision-making efficiency. Ultimately, the findings highlight that data analytics is not only a competitive advantage but also a necessity for achieving sustainable customer satisfaction in today’s digital economy.
Keywords
Customer Behaviour, Customer Experience
Downloads
References
1. Abell, A., Biswas, D., & Christian Arroyo Mera. (2024). Food and technology: Using digital devices for restaurant orders leads to indulgent outcomes. Journal of the Academy of Marketing Science, 52, :1673-1691. https://doi.org/10.1007/s11747-024-01029-6 [Google Scholar] [Crossref]
2. Abu Khalifeh, A. N., & Mat Som, A. P. (2012). Service quality management in the hotel industry: A conceptual framework for food and beverage departments. International Journal of Business and Management, 7(14), 135–141. https://doi.org/10.5539/ijbm.v7n14p135 [Google Scholar] [Crossref]
3. Afriyeni, Revy Verninda Rinesia, & Abdul Hamid. (2023). Analisis Penggunaan Teknologi Informasi, Inovasi Produk, dan Orientasi Pasar Terhadap Keunggulan Bersaing UMKM Sektor Kuliner Kota Padang. Mabsya: Jurnal Manajemen Bisnis Syariah, 6(1), 115–126. https://doi.org/10.24090/mabsya.v6i1.10895 [Google Scholar] [Crossref]
4. Ali, A., & Harrison, E. (2022). AI and Big Data Analytics: Driving Innovation in E-commerce and Customer Experience. https://doi.org/10.13140/RG.2.2.13430.20805 [Google Scholar] [Crossref]
5. Calvo-Porral, C., & Lévy-Mangin, J.-P. (2017). Store brands’ purchase intention: Examining the role of perceived quality. European Research on Management and Business Economics, 23(2), 90–95. https://doi.org/10.1016/j.iedeen.2016.10.001 [Google Scholar] [Crossref]
6. Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “Big Data” Can Make Big impact: Findings from a Systematic Review and a Longitudinal Case Study. International Journal of Production Economics, 165(165), 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031 [Google Scholar] [Crossref]
7. Hasan, N. H. M., Ibrahim, N. F., & Jun, K. C. (2025). Drivers of Customer Satisfaction in Malaysia’s Online Food Delivery Services: A Pilot Study. International Review of Management and Marketing, 15(3), 1–9. https://doi.org/10.32479/irmm.17803 [Google Scholar] [Crossref]
8. Jain, R., Kumar, A., Nayyar, A., Dewan, K., Garg, R., Raman, S., & Ganguly, S. (2023). Explaining sentiment analysis results on social media texts through visualization. Multimedia Tools and Applications, 82. https://doi.org/10.1007/s11042-023-14432-y [Google Scholar] [Crossref]
9. Nadiah Hanun Ismail, & Chee-Wooi Hooy. (2023). Predicting Restaurant Revenue using Machine Learning. Journal of Contemporary Issues and Thought, 13(2), 9–22. https://doi.org/10.37134/jcit.vol13.2.2.2023 [Google Scholar] [Crossref]
10. Latino, M. E., & Menegoli , M. (2022). Cybersecurity in the food and beverage industry: A reference framework. Computers in Industry, 141(103702). https://doi.org/10.1016/j.compind.2022.103702 [Google Scholar] [Crossref]
11. Liem, G. S., Koay, L. K., Sanderan, P. A., Pong, H. L., Poon, Z. Y., Marimuthu, S. A., Gisca, A. P., Gupta, M., Saxena, M., & Kee, D. M. H. (2023). AI-assisted Food Ordering and Delivery Management System for KFC: Insights from Malaysia, Indonesia and India. Journal of the Community Development in Asia, 6(3), 49–63. https://doi.org/10.32535/jcda.v6i3.2540 [Google Scholar] [Crossref]
12. Lukita, C., Riza, H., Ruli Supriati, Santoso, L., & Kamil, M. (2023). Exploration of Perceived Use of Technology Using A Digital Business Perspective. ADI Journal on Recent Innovation (AJRI), 5(1Sp), 87–96. https://doi.org/10.34306/ajri.v5i1sp.984 [Google Scholar] [Crossref]
13. Mahmud, A., None Nur Vanu, Sadia, N., & Hasan, N. R. (2021). Enhancing Customer Experience and Business Operations in E-Commerce Platforms through Big Data Analytics. Journal of Business and Management Studies, 3(2), 288–295. https://doi.org/10.32996/jbms.2021.3.2.30 [Google Scholar] [Crossref]
14. Oktaviani, I., Purawanto, E., & Triana, T. (2024). Analysis of AI-Based Big Data for Strategic Decision-Making in E-Commerce. Proceedings of International Conference on Science, Health, and Technology, 266–278. https://doi.org/10.47701/icohetech.v5i1.419 [Google Scholar] [Crossref]
15. Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data. O’reilly. [Google Scholar] [Crossref]
16. Schymanietz, M., Jonas, J. M., & Möslein, K. M. (2022). Exploring data-driven service innovation—aligning perspectives in research and practice. Journal of Business Economics, 92(7), 1167–1205. https://doi.org/10.1007/s11573-022-01095-8 [Google Scholar] [Crossref]
17. Shaw, C., & Ivens, J. (2005). Building great customer experiences. Palgrave Macmillan. [Google Scholar] [Crossref]
18. Sukwadi, R. (2015). Utilising Customer Experience Management Framework to Create a Delightful Service Experience. International Journal of Industrial Engineering and Management, 6(1), 29–42. https://doi.org/10.24867/ijiem2015-1-105 [Google Scholar] [Crossref]
19. Fang, Q., Yu, N., & Xu, H. (2022). Governance effects of digital transformation: from the perspective of accounting quality. China Journal of Accounting Studies, 11(1), 1–31. https://doi.org/10.1080/21697213.2023.2148944 [Google Scholar] [Crossref]
20. Mittal, V., Kumar, P., & Tsiros, M. (2023). Customer satisfaction, loyalty behaviors, and firm financial performance: What years of research tells us. Marketing Letters, 34(2), 171-187. https;//doi.org/10.1007/s11002-023-09671-w [Google Scholar] [Crossref]
21. Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Journal of Marketing, 80(6), 69–96. Sagepub. https://doi.org/10.1509/jm.15.0420 [Google Scholar] [Crossref]
22. Fikry, A., Abdul, A. J., Sibghatullah, A., Muhammad, N. S., & Harun, Z. F. (2024). From Click to Cuisine: Navigating the Landscape of Customer Satisfaction in Online Food Delivery Apps. Information Management and Business Review, 16(3(I)S), 579–588. https://doi.org/10.22610/imbr.v16i3(i)s.4085 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- IFRS S1 and S2: A Global and Indian Perspective with Implications for Auditors
- A Study on Consumer Attitudes and Buying Behavior towards organic Food Products
- India’s Transfer Pricing Framework: Evolution, Challenges, and Future Directions
- Application of Statistical Methods in Business Administration: A Quantitative Study on Organizational Performance
- Decoding Fintech Adoption: The Role of Trust, Risks and Perceived Benefits