Chatbot Acceptance in Marketing: Literature Review
Authors
Lecturer at the Faculty of Economics and Management of Mahdia University of Monastir (Tunisia)
Article Information
DOI: 10.47772/IJRISS.2025.914MG00245
Subject Category: Marketing
Volume/Issue: 9/14 | Page No: 3203-3211
Publication Timeline
Submitted: 2025-12-12
Accepted: 2025-12-20
Published: 2025-12-25
Abstract
The digital transformation of consumer behavior and service delivery has accelerated the adoption of AI-powered chatbots in marketing. This paper synthesizes existing literature to examine the diverse applications of chatbots across key marketing domains, including advertising, mobile commerce, e-services, and branding, where they enhance engagement, service quality, and personalized customer experiences. A central focus is the pervasive use of the Technology Acceptance Model (TAM) as the primary theoretical framework for studying chatbot adoption. While acknowledging TAM's robust analytical utility, the review concurrently identifies and discusses its critical limitations, such as technological narrowness, structural oversimplification, and methodological constraints.
Keywords
Chatbot Adoption, Technology Acceptance, AI, TAM model, Marketing
Downloads
References
1. 1 Alsharhan, A., Al-Emran, M., & Shaalan, K. (2024). Chatbot adoption: A multiperspective systematic review and future research agenda. IEEE Transactions on Engineering Management, 71, 10232-10244. Doi:10.1109/TEM.2023.3298360. [Google Scholar] [Crossref]
2. 2 Andrews, M., Luo, X., Fang, Z., & Ghose, A. (2016). Mobile Ad Effectiveness : Hyper-Contextual [Google Scholar] [Crossref]
3. 3 Targeting with Crowdedness. Marketing Science, 35(2), 218-233. [Google Scholar] [Crossref]
4. https://doi.org/10.1287/mksc.2015.0905 3. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall. [Google Scholar] [Crossref]
5. 4 Bart, Y., Stephen, A. T., & Sarvary, M. (2014). Which Products Are Best Suited to Mobile Advertising? A Field Study of Mobile Display Advertising Effects on Consumer Attitudes and Intentions. Journal of Marketing Research, 51(3), 270-285. https://doi.org/10.1509/jmr.13.0503 [Google Scholar] [Crossref]
6. 5 Campbell, C., Sands, S., Ferraro, C., Tsao, H.-Y. J., & Mavrommatis, A. (2020). From data to action : How marketers can leverage AI. Business horizons, 63(2), 227-243. [Google Scholar] [Crossref]
7. https://doi.org/10.1016/j.bushor.2019.12.002 [Google Scholar] [Crossref]
8. 6 Chintalapati, S., & Pandey, S. K. (2022). Artificial intelligence in marketing : A systematic literature review. International Journal of Market Research, 64(1), 38-68. [Google Scholar] [Crossref]
9. 7 Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587–595. [Google Scholar] [Crossref]
10. 8 Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results [Doctoral dissertation, Massachusetts Institute of Technology]. MIT Sloan School of Management. [Google Scholar] [Crossref]
11. 9 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar] [Crossref]
12. https://doi.org/10.1287/mnsc.35.8.982 [Google Scholar] [Crossref]
13. 10 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar] [Crossref]
14. 11 De Cosmo, L. M., Piper, L., & Di Vittorio, A. (2021). The role of attitude toward chatbots and privacy concern on the relationship between attitude toward mobile advertising and behavioral intent to use chatbots. Italian Journal of Marketing, 2021(1-2), 83-102. https://doi.org/10.1007/s43039-021-00020-1 [Google Scholar] [Crossref]
15. 12 Escobar, A. (2016). The impact of the digital revolution in the development of market and communication strategies for the luxury sector (fashion luxury). Central European Business Review, 5(2), 17 [Google Scholar] [Crossref]
16. 13 Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior : An introduction to theory and research. https://philpapers.org/rec/FISBAI?all_versions=1 [Google Scholar] [Crossref]
17. 14 Ford, J., Jain, V., Wadhwani, K., & Gupta, D. G. (2023). AI advertising : An overview and guidelines. Journal of Business Research, 166, 114124. https://doi.org/10.1016/j.jbusres.2023.114124 [Google Scholar] [Crossref]
18. 15 Hagberg, J., Sundstrom, M., & Egels-Zanden, N. (2016). The digitalization of retailing: An exploratory framework. International Journal of Retail & Distribution Management, 44(7), 694–712. [Google Scholar] [Crossref]
19. 16 Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. [Google Scholar] [Crossref]
20. https://doi.org/10.1016/j.jbi.2009.07.002 [Google Scholar] [Crossref]
21. 17 Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. [Google Scholar] [Crossref]
22. 18 Kemp, S. (2022). Digital 2022: Global overview report [online] DataReportal. Available from: https://datareportal.com/reports/digital-2022-global-overview-report Accessed 15 July 2022. [Google Scholar] [Crossref]
23. 19 Kietzmann, J., Mills, A. J., & Plangger, K. (2021). Deepfakes : Perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40(3), 473-485. https://doi.org/10.1080/02650487.2020.1834211 [Google Scholar] [Crossref]
24. 20 Kumar, T. A., Julie, E. G., Burugadda, V. R., Kumar, A., & Kumar, P. (Eds.). (2024). Computational Intelligence: Theory and Applications. Scrivener Publishing. [Google Scholar] [Crossref]
25. 21 Lee, H., & Cho, C.-H. (2020). Digital advertising : Present and future prospects. International Journal of Advertising, 39(3), 332-341. https://doi.org/10.1080/02650487.2019.1642015 [Google Scholar] [Crossref]
26. 22 Lee, H., & Cho, C.-H. (2020). Digital advertising : Present and future prospects. International Journal of Advertising, 39(3), 332-341. https://doi.org/10.1080/02650487.2019.1642015 [Google Scholar] [Crossref]
27. 23 Leppaniemi, M., & Karjaluoto, H. (2005). Factors influencing consumers’ willingness to accept mobile advertising : A conceptual model. International Journal of Mobile Communications, 3(3), 197. https://doi.org/10.1504/IJMC.2005.006580 [Google Scholar] [Crossref]
28. 24 Lim, W. M., Kumar, S., & Ali, F. (2022). Advancing knowledge through literature reviews: ‘what’, ’why’, and ’how to contribute’. The Service Industries Journal, 42 (7–8), 481–513. [Google Scholar] [Crossref]
29. 25 Linh, P. M., & Wu, T.-T. (2023). A conceptual framework on learner’s attitude toward using AI chatbot based on TAM Model in English classroom. The Proceedings of English Language Teaching, Literature, and Translation (ELTLT), 12, 146-154. [Google Scholar] [Crossref]
30. 26 Marikyan, D.& Papagiannidis, S. (2024) Technology Acceptance Model: A review. In S. Papagiannidis (Ed), TheoryHub Book. Available at https://open.ncl.ac.uk / ISBN: 9781739604400 [Google Scholar] [Crossref]
31. 27 McLean, E. R., Sedera, D., & Tan, F. T. C. (2011). Reconceptualizing system use for contemporary information systems. Paper presented at the Pacific Asia Conference on Information Systems (PACIS), Brisbane, Australia. Association for Information Systems. ISBN: 978-1-86435-644-1. [Google Scholar] [Crossref]
32. 28 Misischia, C. V., Poecze, F., & Strauss, C. (2022). Chatbots in customer service : Their relevance and impact on service quality. Procedia Computer Science, 201, 421-428. [Google Scholar] [Crossref]
33. https://doi.org/10.1016/j.procs.2022.03.055 [Google Scholar] [Crossref]
34. 29 Naudé, W. (2019). The decline in entrepreneurship in the West : Is complexity ossifying the economy? IZA Discussion Papers. https://www.econstor.eu/handle/10419/207427 [Google Scholar] [Crossref]
35. 30 Neumann, N., Tucker, C. E., & Whitfield, T. (2019). Frontiers: How Effective Is Third- Party Consumer Profiling? Evidence from Field Studies., 38(6), 918–926. [Google Scholar] [Crossref]
36. 31 Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Ramírez-Correa, P. E. (2015). A comparison of the different versions of popular technology acceptance models. Kybernetes, 44(5), 788–805. https://doi.org/10.1108/K-09-2014-0184 [Google Scholar] [Crossref]
37. 32 Sestino, A., Prete, M. I., Piper, L., & Guido, G. (2020a). Internet of Things and Big Data as enablers for business digitalization strategies. Technovation, 98, 102173. [Google Scholar] [Crossref]
38. 33 Shachak, A.; Kuziemsky, C.; Petersen, C. Beyond TAM and UTAUT: Future Directions for HIT Implementation Research; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [Crossref]
39. 34 Shankar, V., & Balasubramanian, S. (2009). Mobile Marketing : A Synthesis and Prognosis. Journal of Interactive Marketing, 23(2), 118-129. https://doi.org/10.1016/j.intmar.2009.02.002 [Google Scholar] [Crossref]
40. 35 Sharma, N., Arora, M., Tandon, U. and Mittal, A. (2024), "Chatbot integration for online shopping: a bibliometric review and future research agenda", Information Discovery and Delivery, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/IDD-11-2023-0132. [Google Scholar] [Crossref]
41. 36 Smith, K. T. (2020). Marketing via smart speakers : What should Alexa say? Journal of Strategic Marketing, 28(4), 350-365. https://doi.org/10.1080/0965254X.2018.1541924 [Google Scholar] [Crossref]
42. 37 Van den Broeck, E., Zarouali, B., & Poels, K. (2019). Chatbot advertising effectiveness : When does the message get through? Computers in Human Behavior, 98, 150-157. [Google Scholar] [Crossref]
43. 38 Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology : Extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178. [Google Scholar] [Crossref]
44. 39 Watts, J., & Adriano, A. (2021). Uncovering the Sources of Machine-Learning Mistakes in Advertising : Contextual Bias in the Evaluation of Semantic Relatedness. Journal of Advertising, 50(1), 26-38. https://doi.org/10.1080/00913367.2020.1821411 [Google Scholar] [Crossref]
45. 40 Wu, L., Dodoo, N. A., Wen, T. J., & Ke, L. (2021). Understanding Twitter conversations about artificial intelligence in advertising based on natural language processing. International Journal of Advertising, 1– 18. [Google Scholar] [Crossref]