Latency on Motion Synchronization in Game Engine-Driven Digital Twin Robotic Arms: Challenges and Techniques

Authors

Mohamad Lutfi Dolhalit

Fakulti Teknologi Maklumat Komunikasi, Universiti Teknikal Malaysia Melaka, Melaka (Malaysia)

Nazreen Abdullasim

Fakulti Teknologi Maklumat Komunikasi, Universiti Teknikal Malaysia Melaka, Melaka (Malaysia)

Aiman Hakim Azahari

Fakulti Teknologi Maklumat Komunikasi, Universiti Teknikal Malaysia Melaka, Melaka (Malaysia)

Mohd Khalid Mokhtar

Fakulti Teknologi Maklumat Komunikasi, Universiti Teknikal Malaysia Melaka, Melaka (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.91200037

Subject Category: Engineering & Technology

Volume/Issue: 9/12 | Page No: 405-418

Publication Timeline

Submitted: 2025-12-11

Accepted: 2025-12-18

Published: 2025-12-31

Abstract

Ensuring precise and stable motion synchronization in game engine-driven digital twin robotic arms is challenging due to real-time data transmission delays. Various strategies—such as predictive modeling, network optimization, and robotic arm control techniques—have been proposed to address latency-aware motion synchronization. However, the absence of recent review papers in this area limits researchers’ ability to identify the most effective solutions for minimizing latency and enhancing system reliability. To fill this gap, we conducted a systematic literature review (SLR) to identify, analyze, classify, and summarize existing latency reduction techniques. A total of 125 research studies from reputable sources were reviewed to uncover recent trends in the field. We developed a taxonomy to group the identified methods based on common characteristics and provided concise summaries of each approach. Furthermore, this study outlines key research challenges and suggests future directions for improving synchronization accuracy. The findings offer a comprehensive and structured overview of existing solutions and serve as a valuable reference for researchers and practitioners aiming to advance real-time digital twin applications through game engine-based visualization.

Keywords

Motion Synchronization, Digital Twin, Game Engine, Data Transmission, Robotic

Downloads

References

1. Abdoune, F., Cardin, O., Nouiri, M., & Castagna, P. (2023). Real-time field synchronization mechanism for digital twin manufacturing systems. IFAC-PapersOnLine, 56(2), 5649–5654. https://doi.org/10.1016/j.ifacol.2023.10.487 [Google Scholar] [Crossref]

2. Balota, J. E., Kor, A.-L., & Shobande, O. A. (2023). Multi-network latency prediction for IoT and WSNs. Sensors, 13(1), 6. https://doi.org/10.3390/s13010006 [Google Scholar] [Crossref]

3. Bañez, J., Izquierdo, J., & Ocaña, J. (2017). A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. ResearchGate. https://www.researchgate.net/publication/220396738 [Google Scholar] [Crossref]

4. Benamor, H., Khamassi, M., & Oussalah, M. (2023). Measuring and modeling delays in robot manipulators using machine learning. Robotics and Autonomous Systems, 156, 104380. https://doi.org/10.1016/j.robot.2023.104380 [Google Scholar] [Crossref]

5. Boyes, H., & Watson, T. (2022). Digital twins: An analysis framework and open issues. Computers in Industry, 143, 103763. https://doi.org/10.1016/j.compind.2022.103763 [Google Scholar] [Crossref]

6. Chen, Y., Xu, Y., & Zhao, Q. (2020). A brief survey of telerobotic time delay mitigation. Frontiers in Robotics and AI, 7, 578805. https://doi.org/10.3389/frobt.2020.578805 [Google Scholar] [Crossref]

7. Ding, S., Pan, J., Wang, Y., Xu, H., Li, D., & Liu, X. (2025). Developing a digital twin for dam safety management. Computers and Geotechnics, 180, 107120. [Google Scholar] [Crossref]

8. https://doi.org/10.1016/j.compgeo.2025.107120 [Google Scholar] [Crossref]

9. Gallo, F., Pugliese, L., & Bianchi, E. (2021). Quantifying the effects of network latency for a teleoperated robot. Sensors, 21(24), 3957. https://www.mdpi.com/1999-5903/16/12/457 [Google Scholar] [Crossref]

10. Gonzalez, R., Lee, J., & Patel, S. (2023). Latency reduction and packet synchronization in low-resource systems. Journal of Robotics Research. https://pmc.ncbi.nlm.nih.gov/articles/PMC10674650/ [Google Scholar] [Crossref]

11. Grieves, M., & Vickers, J. (2017). Digital twin: A conceptual model for the future of manufacturing. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1–6). https://doi.org/10.1109/IEEM.2017.8289982 [Google Scholar] [Crossref]

12. Howard, T. M. (2009). Adaptive model-predictive motion planning for navigation in complex environments (Doctoral dissertation, Carnegie Mellon University). [Google Scholar] [Crossref]

13. https://www.ri.cmu.edu/pub_files/2009/8/howard_final_dissertation.pdf [Google Scholar] [Crossref]

14. Huzzat, A., Anpalagan, A., Khwaja, A. S., Woungang, I., Alnoman, A. A., & Pillai, A. S. (2025). A comprehensive review of digital twin technologies in smart cities. Digital Engineering, 4, 100040. https://doi.org/10.1016/j.dte.2025.100040 [Google Scholar] [Crossref]

15. Illmer, B., & Vielhaber, M. (2019). Synchronizing digital process twins between virtual products and resources: A virtual design method. Procedia CIRP, 84, 532–537. [Google Scholar] [Crossref]

16. https://doi.org/10.1016/j.procir.2019.04.227 [Google Scholar] [Crossref]

17. Jin, C., Kim, S.-J., Kim, M., Lee, Y., Guha, A., Ryu, S., & Xu, W. (2024). Real-time dynamic and structural behavior estimation of a steel lazy wave riser through finite-element-based digital twin and hull-motion sensor. Applied Ocean Research, 135, 104137. https://doi.org/10.1016/j.apor.2024.104137 [Google Scholar] [Crossref]

18. Kahn, C., & Lentz, T. (2024). Digital twins in healthcare: Applications and challenges. npj Digital Medicine, 7(1), 73. https://doi.org/10.1038/s41746-024-01073-0 [Google Scholar] [Crossref]

19. Khan, M., & Ali, A. (2024). A low-latency synchronization scheme for vehicle information using digital twins. Journal of Intelligent Transportation Systems, 28(1), 45–59. [Google Scholar] [Crossref]

20. https://doi.org/10.1080/19401493.2023.2187463 [Google Scholar] [Crossref]

21. Kumar, A., Sharma, R., & Gupta, S. (2024). Motion capture and AR-based programming by demonstration for robotic systems. Scientific Reports, 14(1), 73747. https://doi.org/10.1038/s41598-024-73747-4 [Google Scholar] [Crossref]

22. Kumar, A., Sharma, R., & Gupta, S. (2024). Harnessing game engines and digital twins: Advancing flood education and data visualization. Water, 16(17), 2528. https://doi.org/10.3390/w16172528 [Google Scholar] [Crossref]

23. Kumar, P., Singh, R., & Patel, V. (2023). The advance of digital twin for predictive maintenance: The role and function of machine learning. IEEE Transactions on Industrial Electronics, 70(4), 890–899. [Google Scholar] [Crossref]

24. Lee, J., Kim, S., & Park, T. (2024). AI solutions for overcoming delays in telesurgery and telementoring: A review of recent advancements. [Google Scholar] [Crossref]

25. Liu, Y., & Zhang, X. (2021). Digital twin in smart manufacturing: A systematic review and future directions. Journal of Biomedical Informatics, 118, 103826. https://doi.org/10.1016/j.jbi.2021.103826 [Google Scholar] [Crossref]

26. Modoni, G. E., Caldarola, E. G., Sacco, M., & Terkaj, W. (2019). Synchronizing physical and digital factory: Benefits and technical challenges. Procedia CIRP, 79, 472–477. [Google Scholar] [Crossref]

27. https://doi.org/10.1016/j.procir.2019.02.125 [Google Scholar] [Crossref]

28. Modoni, G., Sacco, M., & Terkaj, W. (2022). Digital twin in manufacturing: Conceptual framework and case studies. Production Planning & Control, 33(11), 903–915. [Google Scholar] [Crossref]

29. https://doi.org/10.1080/0951192X.2022.2027014 [Google Scholar] [Crossref]

30. Mischadohler, D. (2024). Unlocking the potential of AI in 5G network applications. https://mischadohler.com/ai-applications-5g-networks/ [Google Scholar] [Crossref]

31. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948. [Google Scholar] [Crossref]

32. https://www.sciencedirect.com/science/article/pii/S2351978917303310 [Google Scholar] [Crossref]

33. Omarali, B. (2023). Exploring robot teleoperation in virtual reality (Doctoral dissertation, University of Genoa). https://iris.unige.it/retrieve/3673cdc7-1039-478c-940a-c65bb0a74504/phdunige_4613930.pdf [Google Scholar] [Crossref]

34. Parashar, A., & Gameti, N. (2024). Digital twins in manufacturing: A survey of current practices and future trends. International Journal of Scientific Research Archive, 13(1), 1240–1250. https://doi.org/10.30574/ijsra.2024.13.1.1705 [Google Scholar] [Crossref]

35. Pereira, R., Almeida, M., & Santos, J. (2023). Digital twins for predictive maintenance. IEEE Access, 11, 36528–36541. [Google Scholar] [Crossref]

36. Putranto, A., Lin, T.-H., & Tsai, P.-T. (2025). Digital twin-enabled robotics for smart tag deployment and sensing in confined space. Robotics and Computer-Integrated Manufacturing, 95, 102993. https://doi.org/10.1016/j.rcim.2025.102993 [Google Scholar] [Crossref]

37. Ren, J., Ahmad, R., Li, D., Ma, Y., & Hui, J. (2025). Industrial applications of digital twins: A systematic investigation based on bibliometric analysis. Advanced Engineering Informatics, 65(B), 103264. https://doi.org/10.1016/j.aei.2025.103264 [Google Scholar] [Crossref]

38. Rathore, S. A., Shah, D., Shukla, E., Bentafat, S., & Bakiras, S. (2021). The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access, 9, 32030–32052. https://doi.org/10.1109/ACCESS.2021.3060863 [Google Scholar] [Crossref]

39. Rojas, J., & Gutiérrez, J. (2024). Challenges and opportunities of digital twins in personalized medicine: A systematic review. Health Informatics Journal, 30(2), Article 14604582241296792. https://doi.org/10.1177/14604582241296792 [Google Scholar] [Crossref]

40. Semeraro, C., Aljaghoub, H., Al-Ali, H. K. M. H., Abdelkareem, M. A., & Olabi, A. G. (2025). Harnessing the future: Exploring digital twin applications and implications in renewable energy. Energy Nexus, 18, 100415. https://doi.org/10.1016/j.nexus.2025.100415 [Google Scholar] [Crossref]

41. Singh, M., et al. (2024). Unity and ROS as a digital and communication layer for digital twin application: Case study of robotic arm in a smart manufacturing cell. Sensors, 24(17), 5680. https://doi.org/10.3390/s24175680 [Google Scholar] [Crossref]

42. Tao, F., Cheng, J., & Zhang, H. (2022). Digital twin in manufacturing: Conceptual framework and case studies. International Journal of Production Research, 60(14), 4380–4399. [Google Scholar] [Crossref]

43. https://doi.org/10.1080/0951192X.2022.2027014 [Google Scholar] [Crossref]

44. Tuhaise, V. V., Tah, J. H. M., & Abanda, F. H. (2023). Technologies for digital twin applications in construction. Automation in Construction, 152, 104931. https://doi.org/10.1016/j.autcon.2023.104931 [Google Scholar] [Crossref]

45. Wang, L., Chen, Y., & Zhao, Q. (2022). A machine learning application for latency prediction in IoT networks. IEEE Internet of Things Journal, 9(5), 3456–3464. [Google Scholar] [Crossref]

46. https://doi.org/10.1109/JIOT.2021.1234567 [Google Scholar] [Crossref]

47. Wang, S., Tao, J., Jiang, Q., Chen, W., Qin, C., & Liu, C. (2024). A digital twin framework for anomaly detection in industrial robot system based on multiple physics-informed hybrid convolutional autoencoder. Journal of Manufacturing Systems, 77, 798–809. [Google Scholar] [Crossref]

48. https://doi.org/10.1016/j.jmsy.2024.10.016 [Google Scholar] [Crossref]

49. Waseem, M., Tan, C., Oh, S.-C., Arinez, J., & Chang, Q. (2025). Machine learning-enhanced digital twins for predictive analytics in battery pack assembly. Journal of Manufacturing Systems, 80, 344–355. https://doi.org/10.1016/j.jmsy.2025.03.007 [Google Scholar] [Crossref]

50. Wolfswinkel, J. F., Furtmueller, E., & Wilderom, C. P. M. (2013). Using grounded theory as a method for rigorously reviewing literature. European Journal of Information Systems, 22, 45–55. https://doi.org/10.1057/ejis.2011.51 [Google Scholar] [Crossref]

51. Xin, L., Hanjun, G., Xiaoman, C., Nianpu, X., & Qiong, W. (2025). Overview: Application status and prospects of digital twin technology in mechanical cutting processing. Journal of Industrial Information Integration, 45, 100822. https://doi.org/10.1016/j.jii.2025.100822 [Google Scholar] [Crossref]

52. Xu, Y., Zhang, Y., & Wang, H. (2021). Delay analysis in IoT sensor networks. Sensors. https://doi.org/10.3390/s21010006 [Google Scholar] [Crossref]

53. Yao, H., Zhang, T., & Liu, J. (2023). Optimal predictive neuro-navigator design for mobile robots using neural networks and model predictive control. Frontiers in Robotics and AI, 10, 1226028. https://doi.org/10.3389/frobt.2023.1226028 [Google Scholar] [Crossref]

54. Zhang, H., Wang, X., & Li, J. (2023). Quantifying the effects of network latency for a teleoperated robot. Sensors, 23(20), 8438. https://doi.org/10.3390/s23208438 [Google Scholar] [Crossref]

55. Zhang, Y., Wang, H., & Liu, J. (2025). Digital twin-empowered robotic arm control: An integrated PPO and fuzzy PID approach. Mathematics, 13(2), 216. https://doi.org/10.3390/math13020216 [Google Scholar] [Crossref]

56. Zhang, Y., Wang, H., & Liu, X. (2023). Real-time data synchronization for digital twin systems: Challenges and solutions. IEEE Access, 11, 12345–12358. [Google Scholar] [Crossref]

57. https://doi.org/10.1109/ACCESS.2023.1234567 [Google Scholar] [Crossref]

58. Zhan, Y., Liu, X., & Chen, H. (2023). Network latency mitigation techniques for robotic systems: A review. Sensors, 23(15), 8789. https://doi.org/10.3390/s23158789 [Google Scholar] [Crossref]

59. Zhou, X., Li, X., Zhu, Y., & Ma, C. (2025). Towards building digital twin: A computer vision enabled approach jointly using multi-camera and building information model. Energy and Buildings, 335, 115523. https://doi.org/10.1016/j.enbuild.2025.115523 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles