Design and Evaluation of Multi-Floor Lorawan System for Indoor Deployment
Authors
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.91200039
Subject Category: Communication
Volume/Issue: 9/12 | Page No: 429-441
Publication Timeline
Submitted: 2025-12-11
Accepted: 2025-12-18
Published: 2025-12-31
Abstract
This study explores the impact of gateway placement on the performance of LoRaWAN networks in a multi-floor indoor environment, focusing on signal propagation and packet delivery reliability. Leveraging The Things Network (TTN) as the network server and Ubidots for real-time data visualization, the project involved designing and deploying an indoor LoRaWAN setup to evaluate how gateway elevation influences key metrics such as Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Packet Delivery Ratio (PDR). Results indicate that while Level 4 gateway placement offers stronger performance in line- of-sight (LOS) areas, it suffers from sharp degradation in lower floors. Conversely, Level 3 gateway placement provides more consistent coverage, particularly in non-line-of-sight (NLOS) and in the first floor areas. These findings emphasize that optimal gateway placement is not necessarily the highest point, but rather a strategically balanced position suited to the building’s structure. The integration of TTN and Ubidots proved essential for reliable network management, supporting practical recommendations for scalable and energy- efficient LoRaWAN deployments in complex indoor environments.
Keywords
LoRaWAN, Internet of Things, The Things Network, Gateway placement, Spreading Factor
Downloads
References
1. Shilpa, B., Kumar, P. R., & Kumar Jha, R. (2023). Spreading Factor Optimization for Interference Mitigation in Dense Indoor LoRa Networks. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), 1–5. [Google Scholar] [Crossref]
2. Loh, F., Baur, C., Geißler, S., Hesham ElBakoury, & Hoßfeld, T. (2023). Collision and Energy Efficiency Assessment of LoRaWANs with Cluster-Based Gateway Placement. IEEE International Conference on Communications Workshops (ICC Workshops), 391–396. [Google Scholar] [Crossref]
3. Alkhazmi, E. H., Elkawafi, S. M., Aldarrat, A. A., Abbas, M. A., Hussameldin Abubakr, & Shamatah, H. A. (2023). Analysis of Real-World LoRaWAN Network Performance Across Outdoor and Indoor Scenarios. IEEE 11th International Conference on Systems and Control (ICSC), 329–334. [Google Scholar] [Crossref]
4. Idris, F., Latiff, A. A., Buntat, M. A., Lecthmanan, Y., & Berahim, Z. (2024). IoT-based fertigation system for agriculture. Bulletin of Electrical Engineering and Informatics, 13(3), 1574–1581. [Google Scholar] [Crossref]
5. Pandey, S., Kumari, P., Gupta, H. P., Rai, D., & Rao, S. V. (2024). A Site-Specific LoRaWAN Parameters Selection Approach with Multi-Loss Propagation Model. IFIP Networking Conference (IFIP Networking), 350–358. [Google Scholar] [Crossref]
6. Neumann, P., Montavont, J., & Noël, T. (2016). Indoor deployment of low-power wide area networks (LPWAN): A LoRaWAN case study. IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 1–8. [Google Scholar] [Crossref]
7. Yasmin, R., Juha Petajajarvi, Mikhaylov, K., & Ari Pouttu. (2018). Large and Dense LoRaWAN Deployment to Monitor Real Estate Conditions and Utilization Rate. IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1– 6. [Google Scholar] [Crossref]
8. El Chall, R., Lahoud, S., & El Helou, M. (2019). LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet of Things Journal, 6(2), 2366–2378. [Google Scholar] [Crossref]
9. Izzam, M. M., Abidin, H. Z., Afzal, S., & Zaman, K. (2019). Performance Analysis of LoRaWAN for Indoor Application. 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 156–159. [Google Scholar] [Crossref]
10. Xu, W., Kim, J. Y., Huang, W., Kanhere, S. S., Jha, S. K., & Hu, W. (2020). Measurement, Characterization, and Modeling of LoRa Technology in Multifloor Buildings. IEEE Internet of Things Journal, 7(1), 298–310 [Google Scholar] [Crossref]
11. Hanaffi, H., Mohamad, R., Suliman, S. I., Kassim, M., Anas, N. M., & Zaki, A. (2020). Single-Channel LoRaWAN Gateway for Remote Indoor Monitoring System: An Experimental, 8th International Electrical Engineering Congress (iEECON), 1–4. [Google Scholar] [Crossref]
12. Zain, A. R., Oktivasari, P., Agustin, M., Kurniawan, A., Murad, F. A., & Nurrahman, I. (2022). Evaluation of Encryption and Decryption Data Packet Delivery Performance in Smart Home Design using the LoRaWAN Protocol. 5th International Conference of Computer and Informatics Engineering (IC2IE), 241–246. [Google Scholar] [Crossref]
13. Perković, T., Dujić Rodić, L., Šabić, J., & Šolić, P. (2023). Machine Learning Approach towards LoRaWAN Indoor Localization. Electronics, 12(2), 457. [Google Scholar] [Crossref]
14. Sharma, V., & Roy, A. (2023). Localized Indoor / Outdoor Lora Net Work A Review. 1st International Conference on Intelligent Computing and Research Trends (ICRT), 1–11. [Google Scholar] [Crossref]
15. Grübel, J., Thrash, T., Aguilar, L., Gath-Morad, M., Hélal, D. Sumner, R. W., Hölscher. C., & Schinazi, V. R. (2022). Dense Indoor Sensor Networks: Towards passively sensing human presence with LoRaWAN. Pervasive and Mobile Computing, 84, 101640–101640. [Google Scholar] [Crossref]
16. Bertoldo, S., Paredes, M., Carosso, L., Allegretti, M., & Savi, P. (2019). Empirical indoor propagation models for LoRa radio link in an office environment. 13th European Conference on Antennas and Propagation (EuCAP), 1-5. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Communication Strategies among Promoters During MATTA Fair 2025
- An Examination of Colleen Ballinger’s Experience in Social Media: Cancel Culture Chronicle
- Communication Patterns in Conflict Interactions in Premarital Couples Who Are in Abusive Relationships
- Social Media Use on Mental Health Outcomes among Adolescents and Young Adults in Port Harcourt City
- (Un)Successful Error Repairs in L2 Communication