Enhancing Social Experience in Smart Stadium with Wi-Fi 6 Quality Management

Authors

Nurul Azma Zakaria

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Muhammad Harith Hakim Rosman

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Fairul Azni Jafar

Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Erman Hamid

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Wan Faezah Abbas

Fakulti Sains Komputer & Matematik, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

Muhammad Rahmatur Rahman Mohamad Nazir

E-Content (M) Sdn. Bhd., Suite 3A-1, Block 4805 CBD Perdana, 2, Jln Perdana, Cyber 12, 63000 Cyberjaya, Selangor (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.91200056

Subject Category: Management

Volume/Issue: 9/12 | Page No: 642-652

Publication Timeline

Submitted: 2025-12-09

Accepted: 2025-12-16

Published: 2025-12-31

Abstract

Smart stadiums are revolutionizing live sports by creating digitally connected environments that turn spectators into active participants. However, when thousands of fans simultaneously use public Wi-Fi for streaming and sharing, network congestion often occurs. This overload degrades connectivity and disrupts live broadcasts for remote viewers, causing buffering, poor quality, and interruptions. Limited bandwidth and diverse user demands further challenge Wi-Fi performance, leading to inconsistent experiences. This study proposes a Wi-Fi 6-based Quality of Service (QoS) management framework to ensure uninterrupted, high-quality video streaming during live events. Developed using Python and NS-3 simulation tools, the framework employs the Priority Queuing algorithm to optimize traffic flow. Agile methodology guided iterative development for scalability and adaptability. Performance was evaluated under simulated high-density conditions using key QoS metrics: throughput, packet loss ratio, traffic volume, and bandwidth usage. Results show that Priority Queuing significantly reduces congestion, improves responsiveness, and supports real-time traffic optimization. the study highlights how reliable Wi-Fi 6 connectivity can enhance inclusivity, improve operational efficiency, and foster more immersive and equitable social experiences. Future work will explore advanced prioritization techniques, integration with emerging technologies, and personalization based on user feedback, which bridges technical precision with meaningful social impact in the Wi-Fi 6 era.

Keywords

Smart Stadiums, Wi-Fi 6 Technology, Priority Queuing, Traffic Prioritization

Downloads

References

1. Mozaffariahrar, E., Theoleyre, F., & Menth, M. (2022). A survey of Wi-Fi 6: Technologies, advances, and challenges. Future Internet, 14(10), 293. [Google Scholar] [Crossref]

2. Ji, X., Han, B., Xu, C., Song, C., Su, J. (2023). Adaptive QoS-aware multipath congestion control for live streaming. Computer Networks, 220, 109470. https://doi.org/10.1016/j.comnet.2022.109470 [Google Scholar] [Crossref]

3. Li, Q., vanderSchaar, M. (2004). Providing adaptive QoS to layered video over wireless local area networks through real-time retry limit adaptation. IEEE Transactions on Multimedia, 6(2), 278–290. https://doi.org/10.1109/tmm.2003.822792 [Google Scholar] [Crossref]

4. Huang, C. J., Hu, K. W., & Cheng, H. W. (2023). An adaptive bandwidth management algorithm for next-generation vehicular networks. Sensors, 23(18), 7767. [Google Scholar] [Crossref]

5. Swain, S. K., & Nanda, P. K. (2021). Adaptive queue management and traffic class priority based fairness rate control in wireless sensor networks. IEEE Access, 9, 112607-112623. [Google Scholar] [Crossref]

6. Shao, Y. (2025, June). Research on MAC and Routing Protocols for Stadiums Based on Optimisation Algorithms. In 2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA) (pp. 432-435). IEEE. [Google Scholar] [Crossref]

7. Beshley, M., Kryvinska, N., Seliuchenko, M., Beshley, H., Shakshuki, E. M., & Yasar, A. U. H. (2020). End-to-End QoS “smart queue” management algorithms and traffic prioritization mechanisms for narrow-band internet of things services in 4G/5G networks. Sensors, 20(8), 2324. [Google Scholar] [Crossref]

8. Fang, L. (2021). Intelligent Scheduling Method Supporting Stadium Sharing. Discrete Dynamics in Nature and Society, 2021(1), 3143434. [Google Scholar] [Crossref]

9. Chen, J., & Zhang, D. (2025). Design of IoT-Based Crowd Flow Monitoring System for Smart Sports Venues. In Intelligent Transportation and Smart Cities (pp. 13-22). IOS Press. [Google Scholar] [Crossref]

10. Mohammadi, S., Ghaffarisadr, S. I., & Dos Santos, M. A. Artificial Intelligence (AI): A New Window to Smart Stadiums. In Digital Transformation in Sports (pp. 87-109). Auerbach Publications. [Google Scholar] [Crossref]

11. Şimşek, A., & Devecioğlu, S. (2025). The Future of Technology at Mega Sports Events. Türkiye Spor Bilimleri Dergisi, 9(1), 48-66. [Google Scholar] [Crossref]

12. Schut, P. O., & Glebova, E. (2022). Sports spectating in connected stadiums: mobile application Roland Garros 2018. Frontiers in sports and active living, 4, 802852. [Google Scholar] [Crossref]

13. Bahbahani, M. S., & Alsusa, E. (2019). A game theoretic framework for quality of experience enhancement in dense stadia. IEEE Access, 7, 102606-102616. [Google Scholar] [Crossref]

14. Bajpai A, Bagchi A (2020): Enhancement of fans experience in stadium through better facility management, Ann Trop Med & Public Health; 23(S17): SP231702. DOI: http://doi.org/10.36295/ASRO.2020.231702 [Google Scholar] [Crossref]

15. Raman, R., & Singh, A. (2023, November). 5G and IoT for smart stadium operations for enhancing fan experience and safety. In 2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT) (pp. 1128-1132). IEEE. [Google Scholar] [Crossref]

16. Lusweti, S. W., & Odawa, J. (2023). Towards the advanced technology of smart, secure and mobile stadiums: a perspective of fifa world Cup Qatar 2022. Computer Science and Information Technology, 11(2), 21-30. [Google Scholar] [Crossref]

17. Levallet, N., O’Reilly, N., Wanless, E., Naraine, M., Alkon, E., & Longmire, W. (2019). Enhancing the fan experience at live sporting events: The case of stadium Wi-Fi. Case Studies in Sport Management, 8(1), 6-12. [Google Scholar] [Crossref]

18. Shabrina, W. E., Wisaksono Sudiharto, D., Ariyanto, E., Makky, M. A. (2020a). The QoS improvement using CDN for live video streaming with HLS. 2020 International Conference on Smart Technology and Applications (ICoSTA). [Google Scholar] [Crossref]

19. Bose, S. B., Sujatha, S. S. (2020). Fuzzy logic based QoS management and monitoring system for cloud computing. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). https://doi.org/10.1109/iciss49785.2020.9315874 [Google Scholar] [Crossref]

20. Wu, G. (2025). An innovative priority queueing strategy for mitigating traffic congestion in complex networks. Mathematics, 13(3), 495. [Google Scholar] [Crossref]

21. Sinha, A., Das, P. (2021). Agile methodology vs. traditional waterfall SDLC: A case study on quality assurance process in software industry. 2021 5th International Conference on Electronics, Materials Engineering & amp; amp; Nano-Technology (IEMEN Tech). https://doi.org/10.1109/iementech53263.2021.9614779 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles