Integrating Environmental Education into English Language Teaching: An AI-Supported Approach
Authors
Akademi Pengajian Bahasa, Universiti Teknologi MARA, Shah Alam, Malaysia (Malaysia)
Akademi Pengajian Bahasa, Universiti Teknologi MARA, Shah Alam, Malaysia (Malaysia)
Akademi Pengajian Bahasa, Universiti Teknologi MARA, Shah Alam, Malaysia (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.924ILEIID0097
Subject Category: Computer Science
Volume/Issue: 9/24 | Page No: 876-884
Publication Timeline
Submitted: 2025-09-23
Accepted: 2025-09-30
Published: 2025-11-01
Abstract
This conceptual paper explores the framework of a "Dual Learning Path" for English language instruction, which integrates environmental themes with AI-powered tools to enhance learner engagement and outcomes. It argues that anchoring language learning in real-world issues like plastic pollution fosters motivation, critical thinking, and social awareness by providing a meaningful context for communication, aligning with CLIL principles. Simultaneously, AI tools are presented as crucial for personalizing learning and promoting autonomy. While the synergy of content and technology offers a transformative approach to L2 education, the paper acknowledges that its success depends on overcoming challenges related to teacher readiness and institutional support.
Keywords
Content and Language Integrated Learning (CLIL), AI-powered language learning
Downloads
References
1. Azevedo-Santos, V. M., Brito, M. F. G., Manoel, P. S., Perroca, J. F., Rodrigues-Filho, J. L., Paschoal, L. R. P., Gonçalves, G. R. L., Wolf, M. R., Blettler, M. C. M., Andrade, M. C., Nobile, A. B., Lima, F. P., Ruocco, A. M. C., Silva, C. V., Perbiche-Neves, G., Portinho, J. L., Giarrizzo, T., Arcifa, M. S., & Pelicice, F. M. (2021). Plastic pollution: A focus on freshwater biodiversity. Ambio, 50(7), 1313–1324. https://doi.org/10.1007/s13280-020-01496-5 [Google Scholar] [Crossref]
2. Bidashimwa, D., Hoke, T., Huynh, T., Narkpitaks, N., Priyonugroho, K., Ha, T. T., Burns, A., & Weissman, A. (2023). Plastic pollution: how can the global health community fight the growing problem? BMJ Global Health, 8(6), e012140. https://doi.org/10.1136/bmjgh-2023-012140 [Google Scholar] [Crossref]
3. Bulathwela, S., Pérez-Ortiz, M., Holloway, C., Cukurova, M., & Shawe-Taylor, J. (2024). Artificial intelligence alone will not democratise education: On educational inequality, techno-solutionism and inclusive tools. Sustainability, 16(2), 781. https://doi.org/10.3390/su16020781 [Google Scholar] [Crossref]
4. Chen, C., Liu, H., & Huang, H. (2019). Effects of a mobile game-based English vocabulary learning app on learners’ perceptions and learning performance: A case study of Taiwanese EFL learners. ReCALL, 31(2), 170-188. https://doi.org/10.1017/S0958344018000228 [Google Scholar] [Crossref]
5. Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 [Google Scholar] [Crossref]
6. Dağdeler, K. O. (2023). A systematic review of Mobile-Assisted Vocabulary Learning research. Smart Learning Environments, 10(1), 25. https://doi.org/10.1186/s40561-023-00235-z [Google Scholar] [Crossref]
7. Darn, S. (n.d.). Content and Language Integrated Learning (CLIL). TeachingEnglish. Retrieved September 25, 2025, from https://www.teachingenglish.org.uk/content-and-language-integrated-learning-clil [Google Scholar] [Crossref]
8. De La Vall, R., & Araya, F. (2023). Exploring the benefits and challenges of AI-language learning tools. International Journal of Social Sciences and Humanities Invention, 10(1), 1–10. https://doi.org/10.18535/ijsshi/v10i01.02 [Google Scholar] [Crossref]
9. Dogan, M. E., Dogan, T., & Bozkurt, A. (2023). The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056 [Google Scholar] [Crossref]
10. Hamal, O., El Faddouli, N., Harouni, M., & Lu, J. (2022). Artificial Intelligent in Education. Sustainability, 14(5), 2862. https://doi.org/10.3390/su14052862 [Google Scholar] [Crossref]
11. Hamzah, F., Phong, S. Y., Sharifudin, M. N. S., Zain, Z. M., & Rahim, M. N. (2021). Exploring students’ readiness on English language blended learning. Asian Journal of University Education, 16(4), 263–273. https://doi.org/10.24191/ajue.v16i4.11948 [Google Scholar] [Crossref]
12. Hao, T., Wang, Z., & Ardasheva, Y. (2021). Technology-Assisted Vocabulary Learning for EFL Learners: A Meta-Analysis. Journal of Research on Educational Effectiveness, 14(3), 645–667. https://doi.org/10.1080/19345747.2021.1917028 [Google Scholar] [Crossref]
13. Hasrina, N., Yanti, L., & Kamarullah, K. (2024). Integrating environmental themes into English language teaching: Current practices and future strategies. Journal on Education, 7(2), 358–367. https://doi.org/10.31004/joe.v7i2.7906 [Google Scholar] [Crossref]
14. Hosseini, H., Fathi, J., Derakhshesh, A., & Mehraein, S. (2022). A model of classroom social climate, foreign language enjoyment, and student engagement among English as a foreign language learners. Frontiers in Psychology, 13, 933842. https://doi.org/10.3389/fpsyg.2022.933842 [Google Scholar] [Crossref]
15. Kamalov, F., Calonge, D. S., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451 [Google Scholar] [Crossref]
16. Kazazoglu, S. (2025). Environmental Education Through Eco-Literacy: Integrating Sustainability into English Language Teaching. Sustainability, 17(5), 2156. https://doi.org/10.3390/su17052156 [Google Scholar] [Crossref]
17. Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P. K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P., & Vara Prasad, P. V. (2021). Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability, 13(17), 9963. https://doi.org/10.3390/su13179963 [Google Scholar] [Crossref]
18. Lăpădat, L., & Lăpădat, M. (2024). The importance of motivation in foreign language learning. Scientific Bulletin of the Politehnica University of Timişoara Transactions on Modern Languages, 25(1), 27–34. https://doi.org/10.59168/vgle2734 [Google Scholar] [Crossref]
19. Lee, J. S., & Lee, K. (2020). The role of informal digital learning of English and L2 motivational self system in foreign language enjoyment. British Journal of Educational Technology, 52(1), 358–373. https://doi.org/10.1111/bjet.12955 [Google Scholar] [Crossref]
20. Nor, H., Hizriani, N., & Kadariyah, N. (2022). Teachers’ materials development, lesson planning, and teaching skills readiness in teaching English. PANYONARA: Journal of English Education, 4(1), 1–19. https://doi.org/10.19105/panyonara.v4i1.5909 [Google Scholar] [Crossref]
21. Nurassyl, K., Umirzakova, Z., Shadiev, R., & Jotsov, V. (2023). A student-centered approach using modern technologies in distance learning: A systematic review of the literature. Smart Learning Environments, 10(1), 1–28. https://doi.org/10.1186/s40561-023-00280-8 [Google Scholar] [Crossref]
22. Prata, J. C., Silva, A. L. P., Da Costa, J. P., Mouneyrac, C., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2019). Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. International Journal of Environmental Research and Public Health, 16(13), 2411. https://doi.org/10.3390/ijerph16132411 [Google Scholar] [Crossref]
23. Rezaei, M., & Salehi, H. (2022). Relationship between intercultural communicative competence and L2 learning: Iranian EFL learners’ motivation and achievement. Journal of Practical Studies in Education, 3(5), 27–38. https://doi.org/10.46809/jpse.v3i5.54 [Google Scholar] [Crossref]
24. Sujatna, M., Astarina, A., & Heryono, H. (2024). AI for language learning: Friend or foe?. Linguistic, English Education and Art (LEEA) Journal, 7(2), 120–131. https://doi.org/10.31539/leea.v7i2.9331 [Google Scholar] [Crossref]
25. Tai, K. W. H., & Zhao, Y. V. (2022). Success factors for English as a second language university students’ attainment in academic English language proficiency: Exploring the roles of secondary school medium-of-instruction, motivation and language learning strategies. Applied Linguistics Review, 15(3), 611–641. https://doi.org/10.1515/applirev-2022-0049 [Google Scholar] [Crossref]
26. Thanya, R., & C, Suganthan. (2023). Enhancement of learners’ receptive skills through task-based activities to understand the eco-centric issues using Wall-E. World Journal of English Language, 13(7), 490–499. https://doi.org/10.5430/wjel.v13n7p490 [Google Scholar] [Crossref]
27. Thohir, L. (2017). Motivation in a foreign language teaching and learning. Vision: Journal for Language and Foreign Language Learning, 6(1), 20–29. https://doi.org/10.21580/vjv6i11580 [Google Scholar] [Crossref]
28. Thushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709 [Google Scholar] [Crossref]
29. Vo, H. (2023). Giving choices or making tasks relevant? Classroom practices that foster L2 learner engagement. System, 118, 103098. https://doi.org/10.1016/j.system.2023.103098 [Google Scholar] [Crossref]
30. Walter, E. (2024). Embracing the future of artificial intelligence in the classroom: The relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(1), 1–29. https://doi.org/10.1186/s41239-024-00448-3 [Google Scholar] [Crossref]
31. Wang, H., Xu, L., & Li, J. (2023). Connecting foreign language enjoyment and English proficiency levels: The mediating role of L2 motivation. Frontiers in Psychology, 14, 1054657. https://doi.org/10.3389/fpsyg.2023.1054657 [Google Scholar] [Crossref]
32. Wang, L., Nabi, G., Yin, L., Wang, Y., Li, S., Hao, Z., & Li, D. (2021). Birds and plastic pollution: Recent advances. Avian Research, 12(1), 1–9. https://doi.org/10.1186/s40657-021-00293-2 [Google Scholar] [Crossref]
33. Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167 [Google Scholar] [Crossref]
34. Wang, W., & Yeh, M. (2024). The effect of instruction on the development of L2 interactional competence: Listener responses in Chinese as a second language. System, 122, 103511. https://doi.org/10.1016/j.system.2024.103511 [Google Scholar] [Crossref]
35. Wei, L. (2023). Artificial intelligence in language instruction: Impact on English learning achievement, L2 motivation, and self-regulated learning. Frontiers in Psychology, 14, 1261955. https://doi.org/10.3389/fpsyg.2023.1261955 [Google Scholar] [Crossref]
36. Windsor, F. M., Durance, I., Horton, A. A., Thompson, R. C., Tyler, C. R., & Ormerod, S. J. (2019). A catchment‐scale perspective of plastic pollution. Global Change Biology, 25(4), 1207–1221. https://doi.org/10.1111/gcb.14572 [Google Scholar] [Crossref]
37. Yu, B., Guo, W. Y., & Fu, H. (2024). Sustainability in English language teaching: Strategies for empowering students to achieve the sustainable development goals. Sustainability, 16(8), 3325. https://doi.org/10.3390/su16083325 [Google Scholar] [Crossref]
38. Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- What the Desert Fathers Teach Data Scientists: Ancient Ascetic Principles for Ethical Machine-Learning Practice
- Comparative Analysis of Some Machine Learning Algorithms for the Classification of Ransomware
- Comparative Performance Analysis of Some Priority Queue Variants in Dijkstra’s Algorithm
- Transfer Learning in Detecting E-Assessment Malpractice from a Proctored Video Recordings.
- Dual-Modal Detection of Parkinson’s Disease: A Clinical Framework and Deep Learning Approach Using NeuroParkNet