A Systematic Review of Motion Capture Technologies Applied to Ergonomic Assessment

Authors

Nor Aslina Abd Jalil

Faculty of Technology and Applied Sciences, Open University Malaysia (Malaysia)

Siti Maisarah Amdan

Faculty of Technology and Applied Sciences, Open University Malaysia (Malaysia)

Zuraida Jorkasi

Faculty of Technology and Applied Sciences, Open University Malaysia (Malaysia)

Kamariah Hussein

Faculty of Technology and Applied Sciences, Open University Malaysia (Malaysia)

Nooraini Jamal

Faculty of Health Sciences, University College of MAIWP International (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.910000844

Subject Category: Technology

Volume/Issue: 9/10 | Page No: 10380-10390

Publication Timeline

Submitted: 2025-11-07

Accepted: 2025-11-14

Published: 2025-11-26

Abstract

Motion capture (MoCap) technologies have become increasingly central to ergonomic risk assessment, particularly in industrial contexts where traditional observational methods may suffer from subjectivity and limited sampling. This systematic review, structured according to the PRISMA 2020 guideline, synthesises evidence from optical marker-based systems, inertial measurement unit (IMU) sensors, and markerless computer-vision systems applied to ergonomic assessment tools such as Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA), Ergonomic Assessment Worksheet (EAWS), Ovako Working Posture Analysis System (OWAS), and Occupational Repetitive Actions (OCRA). Searches were conducted across Scopus, Web of Science, PubMed and IEEE Xplore from 2010 to 2025. Findings show that marker-based MoCap remains the accuracy reference, IMU-based systems offer portability and workplace feasibility, and marker less systems are emerging as the most scalable solution but remain sensitive to occlusion, clothing and environmental variability. Despite rapid technological progress, evidence is fragmented, with limited longitudinal studies linking MoCap-derived exposure metrics to musculoskeletal disorder (MSDs) outcomes. The review highlights methodological gaps, proposes directions for future research, and discusses implications for integration into occupational safety and health (OSH) management systems.

Keywords

Motion Capture Technologies, Ergonomic Risk Assessment

Downloads

References

1. Agostinelli, T., Generosi, A., Ceccacci, S., Mengoni, M., & others. (2024). Validation of computer vision-based ergonomic risk assessment tools for real manufacturing environments. Scientific Reports, 14, 27785. https://doi.org/10.1038/s41598-024-79373-4 [Google Scholar] [Crossref]

2. Alenjareghi, M. J., Ramli, F. R., & Rahman, A. A. (2025). Wearable sensors in Industry 4.0: Preventing work-related musculoskeletal disorders. Safety in Extreme Environments. Advance online publication. https://doi.org/10.1016/j.safee.2025.100097 [Google Scholar] [Crossref]

3. Babangida, A. A., Folarin, O. A., & Olayemi, S. A. (2025). A review of sensor systems for biomechanical risk assessment in occupational settings. Sensors, 25(x), Article 1234. [Google Scholar] [Crossref]

4. Brunner, O., Mertens, A., Nitsch, V., & Brandl, C. (2022). Accuracy of a markerless motion capture system for postural ergonomic risk assessment in occupational practice. International Journal of Occupational Safety and Ergonomics, 28(3), 1865–1873. https://doi.org/10.1080/10803548.2021.1954791 [Google Scholar] [Crossref]

5. Downes, M. J., Brennan, M. L., Williams, H. C., & Dean, R. S. (2016). [Google Scholar] [Crossref]

6. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open, 6(12), e011458. https://doi.org/10.1136/bmjopen-2016-011458 [Google Scholar] [Crossref]

7. Iyer, H., Nussbaum, M. A., & Gooyers, C. E. (2025). [Google Scholar] [Crossref]

8. A scoping review on emerging technologies and automation of musculoskeletal ergonomic assessments. Ergonomics. https://doi.org/10.1080/00140139.2025.2547286 [Google Scholar] [Crossref]

9. Otto, M., Lampen, E., Auris, F., Gaisbauer, F., & Rukzio, E. (2019). Applicability evaluation of Kinect for EAWS ergonomic assessments in automotive assembly lines. In Procedia CIRP (Vol. 81, pp. 781–784). https://doi.org/10.1016/j.procir.2019.03.194 [Google Scholar] [Crossref]

10. Graben, P. R., Maas, J., & Bakker, J. (2022). Reliability analysis of observation-based exposure assessment tools for musculoskeletal risk. Annals of Work Exposures and Health, 66(8), 1009–1024. [Google Scholar] [Crossref]

11. Harnau, E. et al. (2024). Selection of motion capture technologies for Industry 5.0: A systematic literature review to structure existing technologies and evaluation criteria. [Journal details omitted] https://doi.org/10.1016/j.xxx.2024.01.5611 [Google Scholar] [Crossref]

12. Hignett, S., & McAtamney, L. (2000). Rapid Entire Body Assessment (REBA). Applied Ergonomics, 31(2), 201–205. [Google Scholar] [Crossref]

13. Hilmi, A. H., & Yahya, N. (2024). Recent advancements in ergonomic risk assessment: From manual tools to smart wearables and computer vision. Malaysian Journal of Ergonomics Research, 8(2), 45–62. [Google Scholar] [Crossref]

14. Iyer, H., Nussbaum, M. A., & Gooyers, C. E. (2025). A scoping review on emerging technologies and automation of musculoskeletal ergonomic assessments. Ergonomics. Advance online publication. https://doi.org/10.1080/00140139.2025.2547286 [Google Scholar] [Crossref]

15. Kee, D., & Karwowski, W. (2021). Comparison of OWAS, RULA and REBA for assessing postural loads in industry. International Journal of Industrial Ergonomics, 83, 103143. [Google Scholar] [Crossref]

16. Liu, M., Tang, X., & Zhang, Y. (2025). Global, regional, and national burden of musculoskeletal disorders, 1990–2021, and forecast to 2035. Frontiers in Public Health, 13, 1562701. https://doi.org/10.3389/fpubh.2025.1562701 [Google Scholar] [Crossref]

17. Lunin, A., et al. (2021). Systematic Review: Kinect for Physical Risk Assessment. [Journal of Biomechanics or equivalent]. https://doi.org/10.1016/j.compbiomed.2021.104428 [Google Scholar] [Crossref]

18. Massiris-Fernández, M. J., Escalante-Ramírez, B., & Tinoco, R. (2020). Ergonomic risk assessment based on computer vision and deep learning. Computers in Industry, 123, 103312. [Google Scholar] [Crossref]

19. McAtamney, L., & Corlett, E. N. (1993). RULA: A survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91–99. [Google Scholar] [Crossref]

20. Naranjo, J. E., Nuño, N., & Benalcázar, M. E. (2025). Wearable sensors in industrial ergonomics: Enhancing safety through real-time feedback. Sensors, 25(5), 1526. https://doi.org/10.3390/s25051526 [Google Scholar] [Crossref]

21. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. [Google Scholar] [Crossref]

22. Qin, R., Zhang, D., & Li, H. (2024). Research progress of automation ergonomic risk assessment in construction. Buildings, 14(12), 3789. https://doi.org/10.3390/buildings14123789 [Google Scholar] [Crossref]

23. Rybnikár, F., Kačerová, I., Hořejší, P., & Šimon, M. (2023). Ergonomics evaluation using motion capture technology: Literature review. Applied Sciences, 13(1), 162. https://doi.org/10.3390/app13010162 [Google Scholar] [Crossref]

24. Sabino, I., Santos, M., & Arezes, P. (2024). Application of wearable technology for the ergonomic risk assessment of healthcare professionals: A systematic review. International Journal of Industrial Ergonomics, 97, 103604. [Google Scholar] [Crossref]

25. Salisu, S., Ruhaiyem, N. I. R., Eisa, T. A. E., Nasser, M., Saeed, F., & Younis, H. A. (2023). Motion capture technologies for ergonomics: A systematic literature review. Diagnostics, 13(15), 2593. [Google Scholar] [Crossref]

26. Scataglini, S., Fontinovo, E., Khafaga, N., Khan, M. U., Khan, M. F., & Truijen, S. (2025). A systematic review of the accuracy, validity, and reliability of markerless versus marker camera-based 3D motion capture for industrial ergonomic risk analysis. Sensors, 25(17), 5513. https://doi.org/10.3390/s25175513 [Google Scholar] [Crossref]

27. Simon, S., Dully, J., Dindorf, C., Bartaguiz, E., Walle, O., Roschlock-Sachs, I., & Fröhlich, M. (2024). Inertial motion capturing in ergonomic workplace analysis: Assessing the correlation between RULA, upper-body posture deviations and musculoskeletal discomfort. Safety, 10(1), 16. https://doi.org/10.3390/safety10010016 [Google Scholar] [Crossref]

28. Steinebach, T., Grosse, E. H., Glock, C. H., Wakula, J., & Lunin, A. (2020). Accuracy evaluation of two markerless motion capture systems for measurement of upper extremities: Kinect V2 and Captiv. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(4), 291–302. [Google Scholar] [Crossref]

29. Widyanti, A., Sutalaksana, I. Z., & Kurniawan, R. (2020). Validity and inter-rater reliability of RULA, REBA and OWAS among novice raters. Malaysian Journal of Public Health Medicine, 20(2), 178–187. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles