Artificial Intelligence-Driven Innovations for Sustainable and Smart Building Maintenance

Authors

Mohd Zulakhmar Zakiyudin

Centre of Studies for Buildin Surveying, Faculty of Built Environment, Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia (Malaysia)

Mohamad Sufian Hasim

Centre of Studies for Buildin Surveying, Faculty of Built Environment, Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.91100155

Subject Category: Social science

Volume/Issue: 9/11 | Page No: 1919-1930

Publication Timeline

Submitted: 2025-11-10

Accepted: 2025-11-20

Published: 2025-12-03

Abstract

This review explores innovative technological solutions and sustainable management strategies transforming building maintenance toward smarter and more environmentally responsible practices. It highlights the integration of AI, digital twins, IoT, robotics, and blockchain in enhancing predictive maintenance, real-time monitoring, and data security. The document emphasizes the importance of sustainable strategies including lean maintenance, energy optimization, and stakeholder engagement to promote efficiency and social benefits. Additionally, it underscores operational decision-making supported by data analytics, multi-criteria frameworks, and user feedback, alongside challenges such as organizational readiness and data fragmentation. Future research is directed toward socio-technical integration, real-world validation, and advancing smart city initiatives, aiming to create resilient and sustainable built environments.

Keywords

Artificial Intelligence, Digital Twins, Sustainability, Building Maintenance

Downloads

References

1. Barroso, S., Bustos, P., & Núñez, P. (2023). Towards a cyber-physical system for sustainable and smart building: a use case for optimising water consumption on a SmartCampus. Journal of Ambient Intelligence and Humanized Computing, 14, 0-0. https://doi.org/10.1007/s12652-021-03656-1 [Google Scholar] [Crossref]

2. Pedral Sampaio, R., Costa, A. A., & Flores-Colen, I. (2023). A discussion of digital transition impact on facility management of hospital buildings. Facilities, 41, 0-0. https://doi.org/10.1108/F-07-2022-0092 [Google Scholar] [Crossref]

3. Hauashdh, A., Yunusa-Kaltungo, A., Jailani, J., & Gamil, Y. (2024). An integrated framework for sustainable and efficient building maintenance operations aligning with climate change, SDGs, and emerging technology. Results in Engineering, 21, 0-0. https://doi.org/10.1016/j.rineng.2024.101822 [Google Scholar] [Crossref]

4. Peng, Y., Zhang, M., Yu, F., Xu, J., & Gao, S. (2020). Digital Twin Hospital Buildings: An Exemplary Case Study through Continuous Lifecycle Integration. Advances in Civil Engineering, 2020, 0-0. https://doi.org/10.1155/2020/8846667 [Google Scholar] [Crossref]

5. Long, W., Bao, Z., Chen, K., Ng, S. T., & Wuni, I. Y. (2024). Developing an integrative framework for digital twin applications in the building construction industry: A systematic literature review. Advanced Engineering Informatics, 59, 0-0. https://doi.org/10.1016/j.aei.2023.102346 [Google Scholar] [Crossref]

6. Lu Vivi, Q., Parlikad, A. K., Woodall, P., Ranasinghe, G. D., & Heaton, J. (2019). Developing a dynamic digital twin at a building level: Using Cambridge campus as case study. No Journal, 0-0. https://doi.org/10.1680/icsic.64669.067 [Google Scholar] [Crossref]

7. Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2023). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56, 0-0. https://doi.org/10.1007/s10462-022-10286-2 [Google Scholar] [Crossref]

8. Villa, V., Naticchia, B., Bruno, G., Aliev, K., Piantanida, P., & Antonelli, D. (2021). IoT open-source architecture for the maintenance of building facilities. Applied Sciences (Switzerland), 11, 0-0. https://doi.org/10.3390/app11125374 [Google Scholar] [Crossref]

9. Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability (Switzerland), 14, 0-0. https://doi.org/10.3390/su14063387 [Google Scholar] [Crossref]

10. Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive maintenance in building facilities: A machine learning-based approach. Sensors (Switzerland), 21, 0-0. https://doi.org/10.3390/s21041044 [Google Scholar] [Crossref]

11. Nelson, W., & Dieckert, C. (2024). Machine Learning-Based Automated Fault Detection and Diagnostics in Building Systems. Energies, 17, 0-0. https://doi.org/10.3390/en17020529 [Google Scholar] [Crossref]

12. Ogunbayo, B. F., Aigbavboa, C. O., Thwala, W., Akinradewo, O., Ikuabe, M., & Adekunle, S. A. (2022). Review of Culture in Maintenance Management of Public Buildings in Developing Countries. Buildings, 12, 0-0. https://doi.org/10.3390/buildings12050677 [Google Scholar] [Crossref]

13. Au-Yong, C. P., Azmi, N. F., & Myeda, N. E. (2022). Promoting employee participation in operation and maintenance of green office building by adopting the total productive maintenance (TPM) concept. Journal of Cleaner Production, 352, 0-0. https://doi.org/10.1016/j.jclepro.2022.131608 [Google Scholar] [Crossref]

14. Zulkifly, U. K. Z., Zakaria, N., & Mohd-Danuri, M. S. (2021). The adoption of total productive maintenance (TPM) concept for maintenance procurement of green buildings in Malaysia. International Journal of Sustainable Construction Engineering and Technology, 12, 0-0. https://doi.org/10.30880/ijscet.2021.12.01.005 [Google Scholar] [Crossref]

15. Nikolaou, I., & Anthopoulos, L. (2024). Smart Cities as Hubs: A Use Case in Public School Buildings. Buildings, 14, 0-0. https://doi.org/10.3390/buildings14020517 [Google Scholar] [Crossref]

16. Herbers, P., Çelik, F., & König, M. (2024). Autonomous Defect Inspection and Mapping for Building Maintenance. No Journal, 0-0. https://doi.org/10.1061/9780784485248.124 [Google Scholar] [Crossref]

17. Olimat, H., Liu, H., & Abudayyeh, O. (2023). Enabling Technologies and Recent Advancements of Smart Facility Management. Buildings, 13, 0-0. https://doi.org/10.3390/buildings13061488 [Google Scholar] [Crossref]

18. Zaheer, M. I., Ajayi, S. O., Zulu, S. L., Oyegoke, A., & Kazemi, H. (2021). Understanding the key competencies of market-ready building surveying graduates from employers’ perspectives. Journal of Engineering, Design and Technology, 19, 0-0. https://doi.org/10.1108/JEDT-01-2020-0012 [Google Scholar] [Crossref]

19. Husain, S. H., Che-Ani, A. I., & Affandi, H. M. (2020). Mismatch in supply and demand of building surveying graduates’ skills: A triangulation perspective. Journal of Technical Education and Training, 12, 0-0. https://doi.org/10.30880/jtet.2020.12.04.007 [Google Scholar] [Crossref]

20. Tavakoli, P., Yitmen, I., Sadri, H., & Taheri, A. (2024). Blockchain-based digital twin data provenance for predictive asset management in building facilities. Smart and Sustainable Built Environment, 13, 0-0. https://doi.org/10.1108/SASBE-07-2023-0169 [Google Scholar] [Crossref]

21. Marzouk, M., Labib, N., & Metawie, M. (2024). Blockchain technology applications in maintaining heritage buildings. Journal of Cultural Heritage, 67, 0-0. https://doi.org/10.1016/j.culher.2024.02.005 [Google Scholar] [Crossref]

22. Kifokeris, D., Tezel, A., & Moon, S. (2024). Decision-Making Framework for Implementing Blockchain in Building Operations and Maintenance (O&M). No Journal, 0-0. https://doi.org/10.1061/9780784485231.059 [Google Scholar] [Crossref]

23. Serrano, W. (2020). Long Short-Term Memory in Intelligent Buildings. No Journal, 0-0. https://doi.org/10.1109/iCCECE49321.2020.9231135 [Google Scholar] [Crossref]

24. Shao, Z., Li, Y., Huang, P., Abed, A. M., Ali, E., Elkamchouchi, D. H., Abbas, M., & Zhang, G. (2023). Analysis of the opportunities and costs of energy saving in lightning system of library buildings with the aid of building information modelling and Internet of things. Fuel, 352, 128918. https://doi.org/10.1016/j.fuel.2023.128918 [Google Scholar] [Crossref]

25. Ren, C., Zhu, H. C., Wang, J., Feng, Z., Chen, G., Haghighat, F., & Cao, S. J. (2023). Intelligent operation, maintenance, and control system for public building: Towards infection risk mitigation and energy efficiency. Sustainable Cities and Society, 93, 104533. https://doi.org/10.1016/j.scs.2023.104533 [Google Scholar] [Crossref]

26. Prol-Godoy, I., Picallo-Perez, A., Sala-Lizarraga, J. M., & Rey-Martínez, J. (2024). Experimental test of a building thermal system for preventive maintenance based on thermoeconomic analysis. Energy Storage and Saving, 3, 100081. https://doi.org/10.1016/j.enss.2023.08.002 [Google Scholar] [Crossref]

27. Wong, W. F., Olanrewaju, A. L., & Lim, P. I. (2021). Value-based building maintenance practices for public hospitals in Malaysia. Sustainability (Switzerland), 13(11), 6200. https://doi.org/10.3390/su13116200 [Google Scholar] [Crossref]

28. Passarelli, R. N., & Mouton, B. J. (2023). Embodied life cycle impacts of lightweight building methods for affordable houses in the USA: Comparison of conventional, circular, and regenerative strategies. Journal of Building Engineering, 77, 107513. https://doi.org/10.1016/j.jobe.2023.107513 [Google Scholar] [Crossref]

29. Arsakulasooriya, K. K., Sridarran, P., & Sivanuja, T. (2024). Applicability of lean maintenance in commercial high-rise buildings: A case study in Sri Lanka. Facilities, 42, 123456. https://doi.org/10.1108/F-10-2022-0131 [Google Scholar] [Crossref]

30. Salas, J., & Yepes, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(1), 234-249. https://doi.org/10.1080/15732479.2022.2121844 [Google Scholar] [Crossref]

31. Jiang, F., Xie, H., Inti, S., Issa, R. R. A., Vanka, V. S. V., Yu, Y., & Huang, T. (2024). Data-driven decision support for equipment selection and maintenance issues for buildings. Buildings, 14(4), 1436. https://doi.org/10.3390/buildings14020436 [Google Scholar] [Crossref]

32. Abdul Majid, N. H., Denan, Z., Abdullah, F. H., & Mohd Noor, M. S. (2015). Shariah Compliance Hospitality Building Design: A Malay Muslim Oriented Architecture. Procedia - Social and Behavioral Sciences, 201, 277-284. https://doi.org/10.1016/j.sbspro.2015.08.159 [Google Scholar] [Crossref]

33. Salleh, N. N., Norazman, N., Muhammad, S. T., & Ibrahim, R. (2023). Strategic planning of sustainable maintenance in heritage school buildings: Malaysia perspectives. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/IJBPA-04-2022-0060 [Google Scholar] [Crossref]

34. Hauashdh, A., Jailani, J., Abdul Rahman, I., & AL-fadhali, N. (2022). Strategic approaches towards achieving sustainable and effective building maintenance practices in maintenance-managed buildings: A combination of expert interviews and a literature review. Journal of Building Engineering, 45, 103490. https://doi.org/10.1016/j.jobe.2021.103490 [Google Scholar] [Crossref]

35. Ciuffreda, A. L., Trovatelli, F., Meli, F., Caselli, G., Stramaccioni, C., Coli, M., & Tanganelli, M. (2024). Historic building information modeling for conservation and maintenance: San Niccolo’s Tower Gate, Florence. Heritage, 7(3), 64. https://doi.org/10.3390/heritage7030064 [Google Scholar] [Crossref]

36. Kim, K. P., Freda, R., & Nguyen, T. H. D. (2020). Building information modelling feasibility study for building surveying. Sustainability (Switzerland), 12. https://doi.org/10.3390/su12114791 [Google Scholar] [Crossref]

37. Keskin, K., & Erbay, M. (2016). A Study on the Sustainable Architectural Characteristics of Traditional Anatolian Houses and Current Building Design Precepts. Procedia - Social and Behavioral Sciences, 216. https://doi.org/10.1016/j.sbspro.2015.12.078 [Google Scholar] [Crossref]

38. Asare, K. A. B., Liu, R., & Anumba, C. J. (2023). Building information modelling for airport facility management: the case of a US airport. Infrastructure Asset Management, 11. https://doi.org/10.1680/jinam.22.00019 [Google Scholar] [Crossref]

39. Abdul-Aziz, A. R., Suresh, S., & Renukappa, S. (2020). The conundrum of professionalising building surveying in Malaysia. International Journal of Building Pathology and Adaptation, 38. https://doi.org/10.1108/IJBPA-10-2019-0086 [Google Scholar] [Crossref]

40. Hoxley, M. (2012). UK building surveying education: The graduates' view. Facilities, 30. https://doi.org/10.1108/02632771211208495 [Google Scholar] [Crossref]

41. Murtaza, F. F. N., Ibrahim, I., & Abdullah, A. (2020). The orientation setting of buildings in the traditional Malay settlement: A case study of kg seri tanjung, sungai udang, melaka. Planning Malaysia, 18. https://doi.org/10.21837/pm.v18i12.752 [Google Scholar] [Crossref]

42. Mong, S. G., Mohamed, S. F., & Misnan, M. S. (2018). Key strategies to overcome cost overruns issues in building maintenance management. International Journal of Engineering and Technology (UAE), 7. https://doi.org/10.14419/ijet.v7i2.29.13330 [Google Scholar] [Crossref]

43. Desbalo, M. T., Woldesenbet, A. K., Bargstädt, H. J., & Yehualaw, M. D. (2024). Critical factors that influence the effectiveness of facility maintenance management practice in public university buildings in Ethiopia: an exploratory factor analysis. Cogent Engineering, 11. https://doi.org/10.1080/23311916.2024.2307150 [Google Scholar] [Crossref]

44. Ayokunle, L., Aigbavboa, C., Ngcobo, N., Aghimien, D., & Adesominu, O. (2024). Measures to Improve the Maintenance of University Buildings in Nigeria. American Journal of Civil Engineering. https://doi.org/10.11648/j.ajce.20241201.12 [Google Scholar] [Crossref]

45. Haixiang Lin, Nana Hu, Qiao He, Zhengxiang Zhao, & Wansheng Bai. (2024). Construction of a Multi-Modal Knowledge Graph for Railway Equipment Operation and Maintenance Based on Building Information Model Data-Driven Approach. https://doi.org/10.11908/j.issn.0253-374x.23362 [Google Scholar] [Crossref]

46. Zhansheng Liu, Guoliang Shi, Xiuli Du, & Zedong Jiao. (2024). Theory system and realization method of intelligent operation and maintenance based on digital twins. Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering, 46. https://doi.org/10.11835/j.issn.2096-6717.2022.040 [Google Scholar] [Crossref]

47. Shubham Singh, Tejwant Singh Brar, Ritu Agrawal, Rajeev Garg, & Mohammad Arif Kamal. (2024). Analyzing Self-healing Concrete as a Remedial Measure for Repair and Maintenance of Buildings. Civil Engineering and Architecture, 12. https://doi.org/10.13189/cea.2024.120115 [Google Scholar] [Crossref]

48. Joseph H. K. Lai, Mengxue Lu. (2024). Carbon emission and maintenance cost of commercial buildings: Quantification, analysis and benchmarking. Journal of Cleaner Production, 447. https://doi.org/10.1016/j.jclepro.2024.141459 [Google Scholar] [Crossref]

49. Olaseni, I. (2020). Digital Twin and BIM synergy for predictive maintenance in smart building engineering systems development. World Journal of Advanced Research and Reviews. https://doi.org/10.30574/wjarr.2020.8.2.0409. [Google Scholar] [Crossref]

50. S., Flanigan, K., & Berg'es, M. (2024). State-of-the-Art Review: The Use of Digital Twins to Support Artificial Intelligence-Guided Predictive Maintenance. ArXiv, abs/2406.13117. https://doi.org/10.48550/arxiv.2406.13117. [Google Scholar] [Crossref]

51. Van Dinter, R., Tekinerdogan, B., & Catal, C. (2022). Predictive maintenance using digital twins: A systematic literature review. Inf. Softw. Technol., 151, 107008. https://doi.org/10.1016/j.infsof.2022.107008. [Google Scholar] [Crossref]

52. Shuhaimi, A., Yusof, M., & Rahman, R. (2024). Drivers, Capabilities, and Challenges for Adopting Digital Twin in Facility Management: A Profound Qualitative Investigation. Planning Malaysia. https://doi.org/10.21837/pm.v22i32.1528. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles