Between Cognitive Overload and Dehumanization: Exploring the Dimensions of Consumer Fatigue with Artificial Intelligence
Authors
Research Laboratory in Marketing (LRM-FSEG Sfax), University of Sfax (Tunisia)
Interdisciplinary Laboratory of University-Business Management (LIGUE), Institute of Advanced Commercial Studies of Carthage, University of Carthage (Tunisia)
Article Information
DOI: 10.47772/IJRISS.2025.910000615
Subject Category: Marketing
Volume/Issue: 9/10 | Page No: 7551-7564
Publication Timeline
Submitted: 2025-10-28
Accepted: 2025-11-04
Published: 2025-11-19
Abstract
Artificial intelligence (AI) is now a central player in interactions between brands and consumers, but its intensive use can generate cognitive, emotional, and relational fatigue, which has been little explored in marketing literature. This research aims to understand AI-fatigue and identify its constituent dimensions through consumers' experiences. An exploratory qualitative approach was adopted, based on 22 semi-structured interviews with regular users of AI, including chatbots, voice assistants, and recommendation systems. Thematic analysis revealed that AI fatigue unfolds along cognitive, emotional, relational, and ethical dimensions, leading in particular to information overload, feelings of dehumanization, and changes in strategies for interacting with technologies. This study makes a theoretical contribution by proposing an integrative conceptualization of AI fatigue and offers practical insights for designing more balanced and sustainable interactions between consumers and intelligent technologies.
Keywords
: Artificial intelligence (AI); AI fatigue
Downloads
References
1. Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological antecedents and implications. MIS quarterly, 831-858. [Google Scholar] [Crossref]
2. Bonsu, S. K., & Belk, R. W. (2003). Do not go cheaply into that good night: Death-ritual consumption in Asante, Ghana. journal of consumer research, 30(1), 41-55. [Google Scholar] [Crossref]
3. Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, 102225. [Google Scholar] [Crossref]
4. Bright, L. F., & Logan, K. (2018). Is my fear of missing out (FOMO) causing fatigue? Advertising, social media fatigue, and the implications for consumers and brands. Internet Research, 28(5), 1213-1227 [Google Scholar] [Crossref]
5. Cave, S., & Dignum, V. (2019). The role of AI in achieving sustainable development goals. AI & Society, 34(4), 527–533. [Google Scholar] [Crossref]
6. Choi, H., Park, J., & Jung, Y. (2018). The role of privacy fatigue in online privacy behavior. Computers in Human Behavior, 81, 42-51. [Google Scholar] [Crossref]
7. da Silva, F. P., Jerónimo, H. M., Henriques, P. L., & Ribeiro, J. (2024). Impact of digital burnout on the use of digital consumer platforms. Technological Forecasting and Social Change, 200, 123172. [Google Scholar] [Crossref]
8. Dabbish, L. A., & Kraut, R. E. (2006). Email overload at work: An analysis of factors associated with email strain. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, 431 440. [Google Scholar] [Crossref]
9. Delacroix, É., Jolibert, A., Monnot, E., Jourdan, P. (2021). Marketing Research: Méthodes de recherche et d'études en marketing. France: Dunod. [Google Scholar] [Crossref]
10. Evrard, Y., Pras, B., & Roux, E. (2009). Market : Fondements et méthodes des recherches en marketing (4ᵉ éd.). Paris : Dunod, 704 pages [Google Scholar] [Crossref]
11. Fan, W., Osman, S., Zainudin, N., & Yao, P. (2024). How information and communication overload affect consumers’ platform switching behavior in social commerce. Heliyon, 10(10). [Google Scholar] [Crossref]
12. Fernandes, T., & Oliveira, R. (2024). Brands as drivers of social media fatigue and its effects on users’ disengagement: The perspective of young consumers. Young Consumers, 25(5), 625-644. [Google Scholar] [Crossref]
13. Flandorfer, P. (2012). Population ageing and socially assistive robots for elderly persons: the importance of sociodemographic factors for user acceptance. International journal of population research, 2012(1), 829835. [Google Scholar] [Crossref]
14. Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. Machine learning and the city: Applications in architecture and urban design, 535-545. [Google Scholar] [Crossref]
15. Fournier, S. (1998). Consumers and their brands: Developing relationship theory in consumer research. Journal of consumer research, 24(4), 343-373. [Google Scholar] [Crossref]
16. Gao, Y., & Liu, H. (2023). Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective. Journal of Research in Interactive Marketing, 17(5), 663–680. [Google Scholar] [Crossref]
17. Garcia, P. (2012). Alone Together: Why We Expect More from Technology and Less from Each Other by Sherry Turkle. InterActions: UCLA Journal of Education and Information Studies, 8(1). [Google Scholar] [Crossref]
18. Giannelloni J.L. et Vernette E. (2001), Etudes de marché, Edition Vuibert, Paris. [Google Scholar] [Crossref]
19. Glaser, B.G., et Strauss, A.L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research., Aldine, Chicago, 271 pages [Google Scholar] [Crossref]
20. Granulo, A., Fuchs, C., & Puntoni, S. (2019). Psychological reactions to human versus robotic job replacement. Nature human behaviour, 3(10), 1062-1069. [Google Scholar] [Crossref]
21. Hobfoll, S. E. (1989). Conservation of resources: a new attempt at conceptualizing stress. American psychologist, 44(3), 513. [Google Scholar] [Crossref]
22. Hobfoll, S. E. (1989). Conservation of resources: a new attempt at conceptualizing stress. American psychologist, 44(3), 513. [Google Scholar] [Crossref]
23. Islam, A. N., Laato, S., Talukder, S., & Sutinen, E. (2020). Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load perspective. Technological forecasting and social change, 159, 120201. [Google Scholar] [Crossref]
24. Kahneman, D. (1973). Attention and Effort. Royaume-Uni: Prentice-Hall. [Google Scholar] [Crossref]
25. Kotler, P., Kartajaya, H., & Setiawan, I. (2021). Marketing 5.0: Technology for Humanity. Hoboken, NJ: John Wiley & Sons. [Google Scholar] [Crossref]
26. Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly Hills, CA : Sage. [Google Scholar] [Crossref]
27. Krippendorff, K. (1980). Content Analysis: An Introduction to Its Methodology. Beverly Hills (CA), Sage. [Google Scholar] [Crossref]
28. Lee, S., Erdem, M., Anlamlier, E., Chen, C. C., Bai, B., & Putney, L. (2023). Technostress and hotel guests: a mere hurdle or a major friction point?. Journal of Hospitality and Tourism Management, 55, 307-317. 34. [Google Scholar] [Crossref]
29. Lițan, D. E. (2025). The Impact of Technostress Generated by Artificial Intelligence on the Quality of Life: The Mediating Role of Positive and Negative Affect. Behavioral Sciences, 15(4), 552. [Google Scholar] [Crossref]
30. Longoni, C., & Cian, L. (2022). Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect. Journal of Marketing, 86(1), 91-108. [Google Scholar] [Crossref]
31. Lyu, T., Guo, Y., & Chen, H. (2024). Understanding the privacy protection disengagement behaviour of contactless digital service users: the roles of privacy fatigue and privacy literacy. Behaviour & Information Technology, 43(10), 2007-2023. [Google Scholar] [Crossref]
32. Marsh, E., Perez Vallejos, E., & Spence, A. (2024). Overloaded by information or worried about missing out on it: A quantitative study of stress, burnout, and mental health implications in the digital workplace. Sage Open, 14(3), 21582440241268830. [Google Scholar] [Crossref]
33. Marshall, M. N. (1996). Sampling for qualitative research. Family practice, 13(6), 522-526. [Google Scholar] [Crossref]
34. Masmoudi, M. H., & El Aoud, N. (2021). Le style d’achat hybride: conceptualisation et proposition d’un instrument de mesure. Recherches en Sciences de Gestion, 143(2), 87-111 [Google Scholar] [Crossref]
35. Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of social issues, 56(1), 81-103. [Google Scholar] [Crossref]
36. Nguyen, K. M., Nguyen, N. T., Ngo, N. T. Q., Tran, N. T. H., & Nguyen, H. T. T. (2024). Investigating consumers’ purchase resistance behavior to AI-Based content recommendations on short-video platforms: a study of greedy and biased recommendations. Journal of Internet Commerce, 23(3), 284-327. [Google Scholar] [Crossref]
37. Panetta, F. (2018). Fintech and banking: today and tomorrow. Speech of the Deputy Governor of the Bank of Italy, Rome, 12th May. Banca-Italia-Panetta-Intervento Fintech.pdf [Google Scholar] [Crossref]
38. Parasuraman, A. (2000). Technology readiness index (TRI): A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307 320. [Google Scholar] [Crossref]
39. Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin Press. [Google Scholar] [Crossref]
40. Peake, J. M., Kerr, G., & Sullivan, J. P. (2018). A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Frontiers in physiology, 9, 743. [Google Scholar] [Crossref]
41. Ragolane, M., & Patel, S. (2025). Too Much, Too Fast: Understanding Ai Fatigue In The Digital Acceleration Era. International Journal of Arts, Humanities and Social Sciences, 6(8), 2693-2555. [Google Scholar] [Crossref]
42. Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people. Cambridge, UK, 10(10), 19-36. [Google Scholar] [Crossref]
43. Ronan, W. W., & Latham, G. P. (1974). The reliability and validity of the critical incident technique: A closer look. Studies in Personnel Psychology, 6(1), 53–64. [Google Scholar] [Crossref]
44. Sahebi, A. G., Kordheydari, R., & Aghaei, M. (2022). A new approach in marketing research: Identifying the customer expected value through machine learning and big data analysis in the tourism industry. Asia-Pacific Journal of Management and Technology (AJMT), 2(3), 26–42. [Google Scholar] [Crossref]
45. Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding. Public opinion quarterly, pp. 321-325. [Google Scholar] [Crossref]
46. Shalu, Verma, N., Dev, K., Bhardwaj, A. B., & Kumar, K. (2025). The Cognitive Cost of AI: How AI Anxiety and Attitudes Influence Decision Fatigue in Daily Technology Use. Annals of Neurosciences, 09727531251359872. [Google Scholar] [Crossref]
47. Sundar, S. S., Jia, H., Bellur, S., Oh, J., & Kim, H. S. (2022). News informatics: engaging individuals with data-rich news content through interactivity in source, medium, and message. In Proceedings of the 2022 CHI conference on human factors in computing systems (pp. 1-17). [Google Scholar] [Crossref]
48. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285. [Google Scholar] [Crossref]
49. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257 285. [Google Scholar] [Crossref]
50. Tarafdar, M., Cooper, C. L., & Stich, J. F. (2019). The technostress trifecta‐techno eustress, techno distress and design: Theoretical directions and an agenda for research. Information systems journal, 29(1), 6-42. [Google Scholar] [Crossref]
51. Tarafdar, M., Pullins, E. B., & Ragu Nathan, T. S. (2015). Technostress: Negative effect on performance and possible mitigations. Information Systems Journal, 25(2), 103 132. [Google Scholar] [Crossref]
52. Thompson, C. J., et Haytko, D. L. (1997). Speaking of fashion: Consumers' uses of fashion discourses and the appropriation of countervailing cultural meanings. Journal of consumer research, 24(1), pp. 15-42. [Google Scholar] [Crossref]
53. Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. Basic Books. [Google Scholar] [Crossref]
54. Turkle, S. (2015). Reclaiming conversation: The power of talk in a digital age. Penguin Press. [Google Scholar] [Crossref]
55. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. [Google Scholar] [Crossref]
56. Vlachos, E., & Schärfe, H. (2014). Social robots as persuasive agents. In International Conference on Social Computing and Social Media (pp. 277-284). Cham: Springer International Publishing. [Google Scholar] [Crossref]
57. Wang, Shuo., (2025). The Influence of AI in Marketing. Proceedings of the 3rd International Conference on Financial Technology and Business Analysis DOI: 10.54254/2754-1169/151/2024.19326 [Google Scholar] [Crossref]
58. Wang, W., Wu, Q., Li, D., & Tian, X. (2025). An exploration of the influencing factors of privacy fatigue among mobile social media users from the configuration perspective. Scientific Reports, 15(1), 427. [Google Scholar] [Crossref]
59. Zarantonello, L., Grappi, S., & Formisano, M. (2024). How technological and natural consumption experiences impact consumer well‐being: The role of consumer mindfulness and fatigue. Psychology & Marketing, 41(3), 465-491. [Google Scholar] [Crossref]
60. Zhang, J., Li, S., Zhang, J. Y., Du, F., Qi, Y., & Liu, X. (2020, July). A literature review of the research on the uncanny valley. In International conference on human-computer interaction (pp. 255-268). Cham: Springer International Publishing. [Google Scholar] [Crossref]
61. Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge. [Google Scholar] [Crossref]