Cradle-To-Gate Environmental Impact Assessment of EDM Wire-Cut and Laser Cutting Processes

Authors

Umi Hayati Ahmad

Universiti Teknikal Malaysia Melaka (Malaysia)

Mohamad Alif Mohamad Hadzir

Universiti Teknikal Malaysia Melaka (Malaysia)

Nurul Ain Maidin

Universiti Teknikal Malaysia Melaka (Malaysia)

Mohd Hadzley Abu Bakar

Universiti Teknikal Malaysia Melaka (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.91100388

Subject Category: Environment

Volume/Issue: 9/11 | Page No: 4919-4926

Publication Timeline

Submitted: 2025-11-27

Accepted: 2025-12-04

Published: 2025-12-11

Abstract

Non-traditional machining (NTM) processes, such as EDM wire-cut and laser cutting, are widely used in manufacturing for their ability to machine complex geometries and hard-to-cut materials. Despite their operational advantages, the environmental implications of these processes remain insufficiently understood. This study develops a structured cradle-to-gate environmental assessment framework to enable a systematic and reproducible comparison between EDM wire-cut and laser cutting for the production of an identical wrench component from mild steel. The framework is organised into sequential stages, including process selection, functional unit and system boundary definition, inventory data collection, and impact modelling using GaBi software. Key impact categories considered include Climate Change, Metal Depletion, Human Toxicity (Cancer), Ionising Radiation, and Freshwater Eutrophication. Results indicate that EDM wire-cut environmental impacts are primarily driven by electricity consumption and wire usage, whereas laser cutting impacts are dominated by high power demand and assist-gas consumption. The study highlights critical process parameters affecting environmental performance and identifies opportunities for impact reduction through optimized machine settings and resource usage. The novelty of this work lies in the introduction of a structured LCA framework tailored specifically for non-traditional machining, providing clear comparative evidence to support more informed and sustainable process selection. These findings offer practical guidance for manufacturers aiming to reduce environmental footprints while maintaining production efficiency.

Keywords

Environmental, Impact, Non-Traditional

Downloads

References

1. Atif, M., et al. (2024). Development of a framework for sustainability assessment of magnesium alloy machining processes. Journal of Sustainable Manufacturing. https://doi.org/10.1080/19397038.2023.2287478 [Google Scholar] [Crossref]

2. DeSilva, A. K. M., & Gamage, J. R. (2016). Effect of wire breakage on the process energy utilisation of EDM. Procedia CIRP, 42, 586–590. https://doi.org/10.1016/j.procir.2016.02.264 [Google Scholar] [Crossref]

3. Gamage, J. R., DeSilva, A. K. M., Harrison, C. S., & Harrison, D. K. (2025). Process level environmental performance of electrodischarge machining of aluminium (3003) and steel (AISI P20) [Preprint]. GCU Research Online. https://researchonline.gcu.ac.uk/ws/files/24213053/DeSilva JRG_Process_level_environmental_performance_of_EDM_R2.pdf [Google Scholar] [Crossref]

4. González‑Rojas, H. O., Miranda‑Valenzuela, J. C., & Calderón‑Najera, J. d. D. (2024). Optimization of cutting parameters for energy efficiency in wire electrical discharge machining of AISI D2 steel. Applied Sciences, 14(11), 4701. https://doi.org/10.3390/app14114701 [Google Scholar] [Crossref]

5. Hannan, A., Mehmood, S., Ali, M. Asad, Raza, M. H., Farooq, M. U., Anwar, S., & Adediran, A. A. (2024). Machining performance, economic and environmental analyses and multi‑criteria optimization of electric discharge machining for SS310 alloy. Scientific Reports, 14, 28930. https://doi.org/10.1038/s41598-024-79338-7 [Google Scholar] [Crossref]

6. He, Y., Xie, H., Ge, Y., Lin, Y., Yao, Z., Wang, B., … Sun, Y. (2022). Laser cutting technologies and corresponding pollution control strategy. Processes, 10(4), 732. https://doi.org/10.3390/pr10040732 [Google Scholar] [Crossref]

7. Ishfaq, K., Sana, M., Rehman, M., Alfaify, A. Y., & Zia, A. W. (2023). Role of biodegradable dielectrics toward tool wear and dimensional accuracy in Cu‑mixed die sinking EDM of Inconel 600 for sustainable machining. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 235. https://doi.org/10.1007/s40430-023-04126-9 [Google Scholar] [Crossref]

8. Liu, Y., Ouyang, P., Zhang, Z., Zhu, H., Chen, X., Wang, Y., Li, B., Xu, K., Wang, J., & Lu, J. (2024). Developments, challenges and future trends in advanced sustainable machining technologies for preparing array micro-holes. Nanoscale, 16(43), 19938–19969. https://doi.org/10.1039/D4NR02910K [Google Scholar] [Crossref]

9. Liu, Z., et al. (2023). LCA‑based environmental sustainability assessment of hybrid additive‑subtractive processes: (HAM vs CNC milling) — turbine blade case study. Advances in Industrial and Manufacturing Engineering, 6. https://doi.org/10.1016/j.aime.2023.100117 [Google Scholar] [Crossref]

10. Oliveira, M., Santos, J. P., Almeida, F. G., Reis, A., Pereira, J. P. G. T., & Barata da Rocha, A. (2011). Impact of laser‑based technologies in the energy‑consumption of metal cutters: Comparison between commercially available systems. Key Engineering Materials, 473, 809–815. https://doi.org/10.4028/www.scientific.net/KEM.473.809 [Google Scholar] [Crossref]

11. O’Neill, K., et al. (2024). Respirable particles and gas contaminants emissions in laser‑cutting processes. Atmospheric Air Quality Research. https://doi.org/10.4209/aaqr.24-02-oa-0032 [Google Scholar] [Crossref]

12. Qudeiri, J. E. A., Zaiout, A., Mourad, A.-H. I., Abidi, M. H., & Elkaseer, A. (2020). Principles and characteristics of different EDM processes in machining tool and die steels. Applied Sciences, 10(6), 2082. https://doi.org/10.3390/app10062082 [Google Scholar] [Crossref]

13. Ravasio, C., Maccarini, G., & Pellegrini, G. I. (2021). Micro‑EDM process sustainability aspects. Università degli Studi di Bergamo. Retrieved from https://hdl.handle.net/10446/181086 [Google Scholar] [Crossref]

14. Salem, A., Hegab, H., & Kishawy, H. A. (2023). Environmental assessment and optimization when machining with micro‑textured cutting tools. In H. Kohl, G. Seliger, & F. Dietrich (Eds.), Manufacturing Driving Circular Economy (Ch. 41, pp. xxx‑xxx). Springer. https://doi.org/10.1007/978-3-031-28839-5_41 [Google Scholar] [Crossref]

15. Zhang, Z., Yu, H., Zhang, Y., Yang, K., Li, W., Chen, Z., & Zhang, G. (2018). Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys. Journal of Cleaner Production, 188, 667–676. https://doi.org/10.1016/j.jclepro.2018.07.053 [Google Scholar] [Crossref]

16. Zheng, J., et al. (2022). Energy and CO₂ emissions modeling for unconventional WEDM process. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.166201 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles