Design and Implementation of an IoT-Based Smart Car Parking System
Authors
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka (Malaysia)
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Seremban 3, Persiaran Seremban Tiga 1, Seremban 3, 70300 Seremban, Negeri Sembilan (Malaysia)
MSV Systems & Services Sdn. Bhd (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.910000681
Subject Category: Computer Science
Volume/Issue: 9/10 | Page No: 8347-8353
Publication Timeline
Submitted: 2025-10-28
Accepted: 2025-11-03
Published: 2025-11-21
Abstract
The rapid growth of urban populations has intensified parking congestion in metropolitan areas, leading to excessive fuel consumption, traffic delays, and environmental concerns. This paper presents the design and implementation of an Internet of Things (IoT)-based smart car parking system using Arduino Uno, NodeMCU (ESP8266), and infrared (IR) sensors. The proposed system detects vacant parking spaces and communicates availability to drivers through the Blynk IoT platform in real time. The system was designed, simulated, and tested using integrated hardware and software components, with results showing reliable detection and efficient data transmission to the user interface. The project demonstrates a scalable, cost-effective solution suitable for commercial and residential applications.
Keywords
Internet of Things (IoT), smart parking, Arduino Uno, NodeMCU
Downloads
References
1. S. Sharma and P. P. Bhonde (2020). Smart parking system using IoT. International Journal of Engineering Research & Technology (IJERT), vol.9, no. 6, pp. 1–5, [Google Scholar] [Crossref]
2. A. R. Al-Ali, I. Zualkernan, and F. Aloul (2010). A mobile GPRS-sensors array for air pollution monitoring. IEEE Sensors Journal, vol. 10, no. 10, pp.1666–1671, [Google Scholar] [Crossref]
3. D. Bajaj and N. Gupta (2012). GPS based automatic vehicle tracking using RFID. Int. J. Adv. Res. Comput. Eng. Technol., vol. 1, no. 2, pp. 91–95. [Google Scholar] [Crossref]
4. R. I. Rajkumar, P. Sankaranarayanan, and G. Sundari (2015). Real-time train tracking using Arduino and Ethernet. Procedia Computer Science, vol.47, pp.133–141. [Google Scholar] [Crossref]
5. K. N. Hancke (2014). Monitoring smart city applications using wireless Sensor networks. IEEE Trans. Ind. Informatics,vol. 10, no. 2, pp. 702–710. [Google Scholar] [Crossref]
6. M. A. Khan and K. Salah (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, vol. 82, pp. 395-411. [Google Scholar] [Crossref]
7. S. S. N. Wazir, M. S. Othman, and A. H. M. Amin (2019). IoT-based parking system using Arduino and ultrasonic sensors. Journal of Engineering and Applied Sciences, vol. 14, no. 10, pp. 3234–3239. [Google Scholar] [Crossref]
8. V. R. Tiwari and A. S. Kulkarni (2019). Remote monitoring using Blynk IoT platform. Int. J. Innovative Technology and Exploring Engineering, vol. 8, no. 11, pp. 3603–3607. [Google Scholar] [Crossref]
9. United Nations (2023). Sustainable Development Goal 11: Sustainable Cities and Communities. UN SDG Knowledge Platform. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- What the Desert Fathers Teach Data Scientists: Ancient Ascetic Principles for Ethical Machine-Learning Practice
- Comparative Analysis of Some Machine Learning Algorithms for the Classification of Ransomware
- Comparative Performance Analysis of Some Priority Queue Variants in Dijkstra’s Algorithm
- Transfer Learning in Detecting E-Assessment Malpractice from a Proctored Video Recordings.
- Dual-Modal Detection of Parkinson’s Disease: A Clinical Framework and Deep Learning Approach Using NeuroParkNet